Possible mechanism of decadal-scale variation in PO_{4} concentration in the western north Pacific, and the influence to the ocean productivity

Kazuaki Tadokoro, Tsuneo Ono, Ichiro Yasuda, Satoshi Osafune, Yuji Okazaki, Akihiro Shiomoto, and Hiroya Sugisaki

Tohoku National Fisheries Research Institute
den@affrc.go.jp

High-latitude controls of thermocline nutrients and low latitude biological productivity

J. L. Sarmiento ${ }^{1}$, N. Gruber ${ }^{2}$, M. A. Brzezinski ${ }^{3}$ \& J. P. Dunne ${ }^{4}$
${ }^{1}$ Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey 08544, USA
${ }^{2}$ IGPP and Department of Atmospheric Sciences, University of California at Los Angeles, Los Angeles, California 90095, USA
${ }^{3}$ Department of Ecology, Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California 93106, USA
${ }^{4}$ NOAA/Geophysical Fluid Dynamics Laboratory, PO Box 308, Forrestal Campus
B Site, Princeton, New Jersey 08542, USA

The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean ${ }^{1}$ and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere ${ }^{2,3}$ and North Atlantic Ocean ${ }^{3}$, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides ${ }^{4}$, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

Data \& Methods

Period
 1951-2004

Oceanographic data

Mezooplankton

Criteria
Odate collection

WOD2001, A-line, JMA Nutrients• temperature• salinity

Neoclanaus plumchrus
Oyashio >5 degree C Transition 5-15 degree C at 100 m depth Kawai (1972) bottom depth $>500 \mathrm{~m}$

Variation in PO_{4} (monthly normalized value)

Oyashio

Transition

Surface layer (0m)

Mid-layer (26.7-26.8 σ)

5-year running mean of annual mean PO_{4}

Oyashio
 Transition

5-year running mean of annual mean PO_{4}

Oyashio
 Transition

Relationship PO_{4} between surface and mid layer

Trend:

inverse between two layers

\rightarrow Suggest decreasing of water exchange between two layers.

Variations in Mixed layer depth

We did not observed significant trend of MLD in the both waters. However, it was reported that the shoaling trend of MLD in western subarctic and Alaskan Gyre (Joyce \& Dunworth-Baker 2003, Freeland et al. 1998, 2005).

MLD in winter

Surface NO_{3} in winter

These are upstream of the Oyashio and Transition waters. The trends of PO_{4} in the Oyashio and Transition waters may be related to the change of MLD in upstream waters.

Bidecadal-scale oscillation

Bidecadal-scale oscillation

Oyashio
Surface layer (0m)

Mid-layer (26.7-26.8б日)

Transition

Osafune \& Yasuda (2006) JGR
Oscillation component (anomaly from trend) of PO_{4} had significant negative relationship with index of 18.6-year diurnal tidal strength in the both layers.

Possible processes of the bidecadal-scale oscillation in PO_{4}

Summary: possible process of variation in PO_{4}

Temperature increse
(Levitus et al., 2005)

Neocalanus plumchrus

Predominant mesozooplankton
Spring-summer species
Feed on phytoplankton and micorozooplankton

Variaton in N. plumchrus biomass in spring-summer

N. Plumchrus biomass had significant positive relationship with PO_{4}.

The relationships suggests the change in PO_{4} supply affect N. Plumchrus productivity via change the primary productively.

