Climate mediated changes in phytoplankton productivity and air-sea CO₂ exchange on the Western Shelf of the Antarctic Peninsula over the last 30 years

> Martin Montes-Hugo, Oscar Schofield, Hugh W. Ducklow, Dough G. Martinson, and Ray Smith Coastal Ocean Observation Lab, Rutgers University

Celebrating **50** Years

Foundation

PICES Conference, Gijón, Spain 2008

Bellings is hot these days...

The climate migration along the Antarctic Peninsula was first detected half-century ago based on air temperatures

Smith and Stammerjohn (2001)

1980-2004 AVHRR, NASA

Seasonal sea ice

Perennial sea ice decline

Data Source NSIDC

The heating is driven by the deep ocean circulation patterns

Big jump in the last decade

Thanks to Doug Martinson et al.

Biogeochemical response to climate migration

UCDW intrusions onto the shelf (increase of iron, decrease of oxygen)

Biological response to climate migration

1) Krill/Salp ratio increases as sea ice cover increases (Loeb et al. 1997)

2) Replacement of ice-dependent species by ice-avoiding species (Fraser et al., 2008)

e.g., Adelie by Gentoo penguin, e.g., Silverfish by Lanterfish

Phytoplankton??

Objectives

1) To investigate influence of climate on phytoplankton communities along the WAP

2) To quantify impact of long-term phytoplankton variability on air-sea exchange of atmospheric CO_2

3) To determine the relative effect of wind stress, sea ice cover and phytoplankton biomass trends on CO_2 transference trough the ocean-atmosphere interface

Hypotheses

H₁ Gradual decline on sea ice cover during the last three decades was accompanied by a reduction on primary productivity due to the absence of MIZ blooms

H₂ Concomitant modifications on seawater carbonate equilibrium will occur as result of long-term decline on phytoplankton biomass

Methods

Climatologies:

wind stress, cloud fraction, 'skin' temperature, 2.5 x 2.5° resolution, 1979-2006, NCEP-NCAR (NOAA), PAR SeaWiFS L3 9km resolution, SST-AVHRR 4 km resolution, 1985-2006 (validation skt), NASA, Sea ice concentration-SMMR-SSM/I, 12.5 km resolution, 1978-2006, (NSIDC), MLD, 1998-present, SODA and FNMOC, QuickScat 1999-2006, 2.5 x 2.5 km resolution.

<u>Pal-LTER datasets:</u> 1993-2006 DIC, Alkalinity, Chlorophyll a concentration, HPLC markers, S, T, nutrients, 0-20 m depth

<u>Historical field data (cross validation of Chl changes)</u> National Oceanographic Data Center, 1978-2006.

Satellite imagery: CZCS (1978-1986) and SeaWiFS (1998-2006) L2 GAC 4.5 x 4.5 km resolution

<u>Spaced-derived Chl a distributions:</u> Dierssen and Smith (2000), only December to February

<u>fCO₂ calculations</u>: seawater pCO_2 from DIC and Alk, CDIAC code, Alfred Wegener Institute for Polar and Marine Research, atmospheric pCO_2 from Jubany Station (1994->), Kw from Liss (1973). NOAA independent dataset to validate ChI- pCO_2 relationships

→ North Grid → South Grid

Sunny

Windy February

Windy February

dChl = seawifs(1998/2006)-czcs(1978/1986)

1998/2006 - 1978/1986

000 60.0 65.0 Dec 60.0

2001/2006 - 1998/2000

Summary of Chl and climate forcing variations between 1978/1986 and 1998/2006

- 1. A recent 60% relative increase of phytoplankton biomass toward <u>southern</u> waters of WAP
- 2. An opposite and more drastic trend from 1978 to 2006 on Chl of <u>northern</u> locations (~89% summer average)
- 3. Overall the phytoplankton biomass over WAP has declined on 12% since 1978
- 4. Sea ice loss 7.5%, 3-fold greater south
- 5. Summer skies 5% cloudier <u>north</u> of WAP
- 6. Early summer skies 5% less cloudiness south of WAP
- 7. General wind intensification in the late summer and especially in southern locations of BS (2-fold)

A few key questions

Now we know the origin of greater Chl south of WAP in the last decade (less light limitation)

Also, we have evidence to accept H₁: 'Decadal sea ice decline will cause an overall reduction of PP'

Which phytoplankton groups are responsible of southern blooms?

How these latitudinal gradients on primary productivity affect biological uptake of CO₂ by the ocean

Largest phytoplankton blooms dominated by large cells and diatom assemblages

Diatoms is the main source of 'large' cells in BS

Multivariate regressions analysis suggests that Chl over the WAP region is mainly determined by diatoms (~80%)

2001 data not plotted

The greater Chl accumulation the greater pCO₂ depletion in surface waters

Phytoplankton uptake of dissolved CO₂ vary with trophic status (>2-fold change on slope)

dpCO₂ variations for 1993-2006 were more sensitive to Diatoms abundance

Sea ice and DpCO₂

Before 2000 more ice favors 'sink'

After 1999 dual response of dpCO₂ as a function of summer sea ice cover

Oceanic phytoplankton more efficient to uptake CO₂ than coastal phytoplankton!!

 ϕCO_2 = mole C/[mole Chl a x mol photons in one day]

Budgets of dpCO₂, ChI, and fCO₂ for WAP

 $\Delta = 1978/1986{-}{>}1998/2006$

Sink	Source	Increase	Decrease	
		∆Chl	∆dpCO ₂	∆fCO ₂
North	Dec	-1.36	+6.68	+2.52
	Jan	-5.43	+46.2	-0.66
	Feb	-2.12	+21.4	-3.02
South	Dec	+1.25 🔒	-1.22 🗸	-0.32
	Jan	+0.49 🔒	-0.92	-1.16
	Feb	+0.02	+16.3	-3.18

Cilmate migration and net summer fCO₂ in BS

 $\Delta_{(1978/1986-1998/2006)}$

In the global context

WAP surface area (north+south GD) is 3.22% BS

- BS is 0.8% of ocean surface area
- BS uptake (ΔFCO_2) is -0.91 Tg C y⁻¹ (mean summer)
- 0.04% of yearly ocean uptake (2.5 Gigaton C)
- C injected to the atmosphere: 6.1 Gigaton C y⁻¹
- C injected 1978-2006: 170.8 Gigaton C y⁻¹

Note: 1 Gigaton C = 10^{15} g C = 10^{3} Tg C

Global Trend = 1.4 ppm CO_2 y⁻¹

Summary of Results so far... 1) We accept H_2 since we found a quantitative change on

dpCO₂ due to Chl enrichment

2) We put in evidence different phytoplankton CO₂ uptake kinetics in eutrophic vs oligo/mesotrophic waters

3) Greater CO₂ sink associated with ChI accumulation above ~1 mg m⁻³ and dominance of large diatoms. Diatom dominance was more connected with ecological differences (e.g., lower grazing) and not with physiological advantages

4) Based on LTER data, synchronicity between MIZ blooms and sea ice timing changed after year 2000. However, CO_2 invasion into the ocean was accelerated due to greater frequency of massive phytoplankton blooms (Chl> 5 mg m⁻³) dominated by large (>20 µm) diatoms to the south of BS

Take home message

WAP and BS are under an ongoing transformation that is affecting climate modes and biological response to increasing atmospheric CO_2

This is the first report showing large scale variations on ChI and fCO₂ along a latitudinal gradient in BS since 1978

LTER data since 1993 is consistent with a 20.5% undersaturation of CO_2 in surface waters of WAP

Combined satellite imagery since 1978 revealed opposite regional trends on Chl as a function of latitude and a greater 'sink' of atmospheric CO_2 in the southern part of BS in the last decade due to more illuminated waters

Take home message

In the process of converting WAP into a sub-Antarctic ecosystem overall Chl has declined but the CO_2 sink (negative fCO_2) has been amplified in 100% as result of more windy conditions and sea ice loss to the south of BS

The estimated three decadal increase on air to sea 'pumping' of atmospheric CO_2 over BS was relatively modest compared to annual intake by the oceans and yearly anthropogenic input to the atmosphere

Thanks!!

A new beach resort?

GD 200-600

