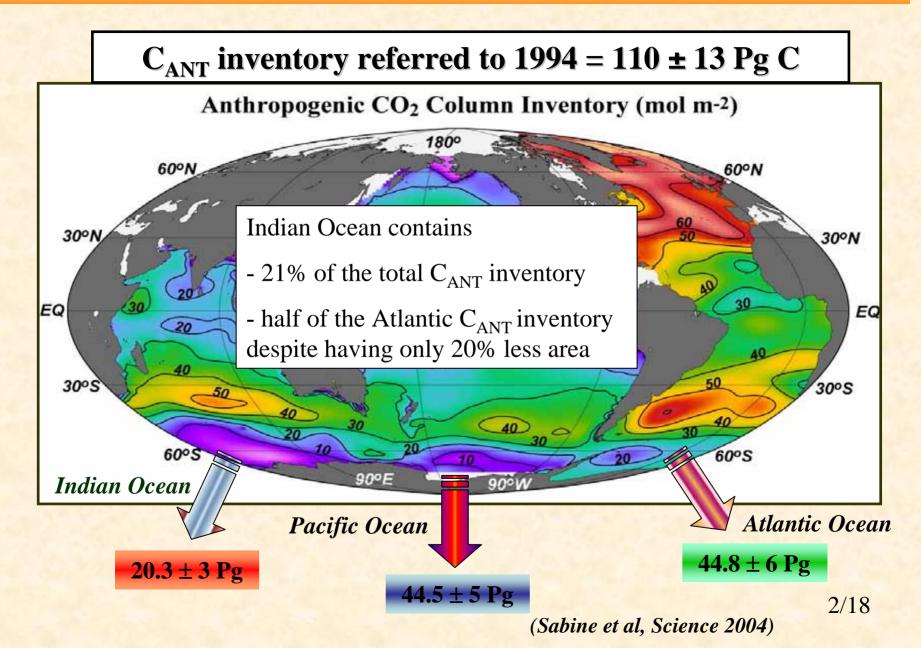
IS THERE A HIGHER CANT STORAGE

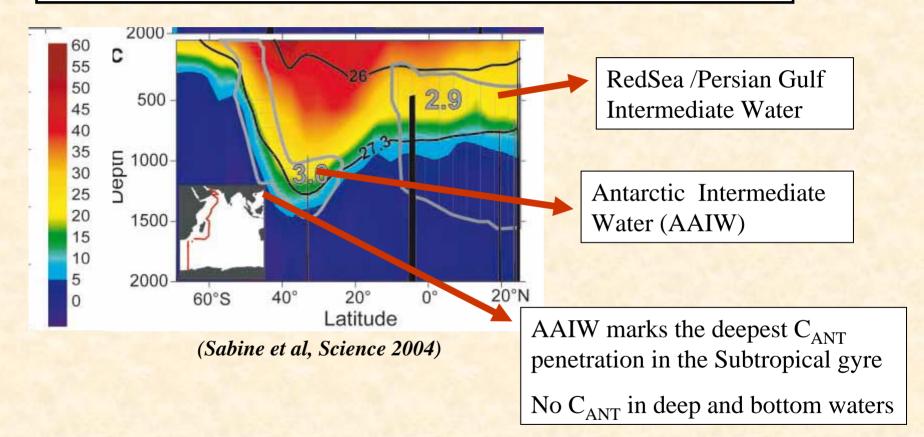
IN THE INDIAN OCEAN?

Marta Álvarez

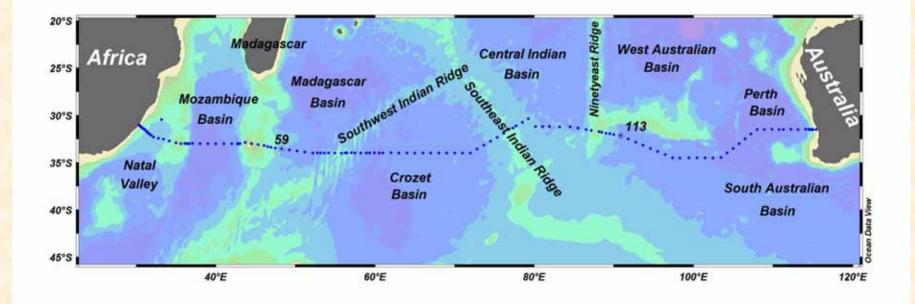
C. Lo Monaco, T. Tanhua, A. Yool, A. Oschlies, J.L. Bullister, C. Goyet, F. Touratier, E. McDonagh and H.L. Bryden.



Gijón, 19-23 May 2008


IMEDEA, CSIC – UIB, Mallorca, Spain

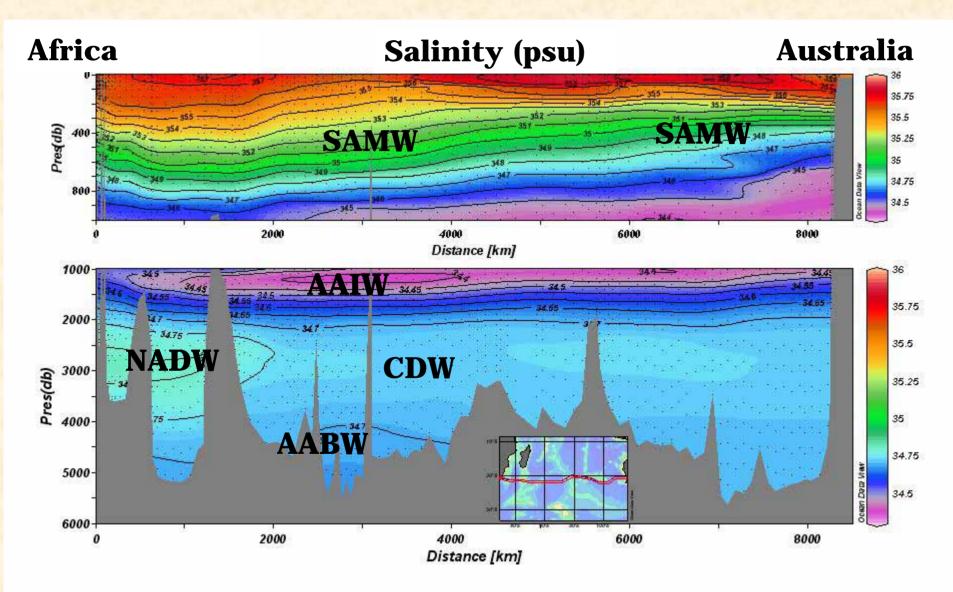
1/18

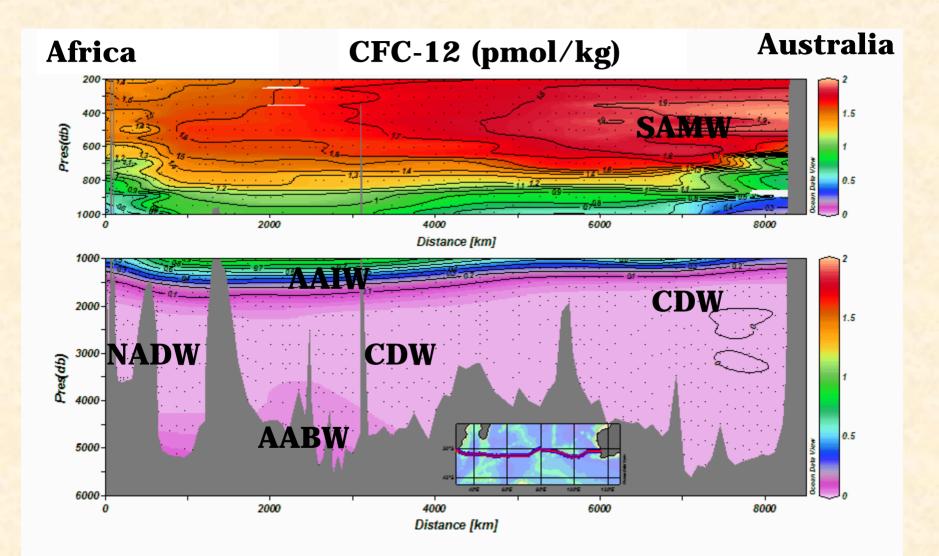

Indian Ocean C_{ANT} vertical distribution μ mol/kg

Hypothesis:

 C_{ANT} penetrates deeper than 1000-1500 m **How to assess this question:** <u>compare</u> different C_{ANT} methods -> difficult: every method has high uncertainties

<u>help</u>: relation of C_{ANT} with tracers (CFC₁₂, CCl₄)




 ∧ On board R/V Charles Darwin, CD139 cruise, 1/3 – 15/4/2002, from Durban to Freemantle

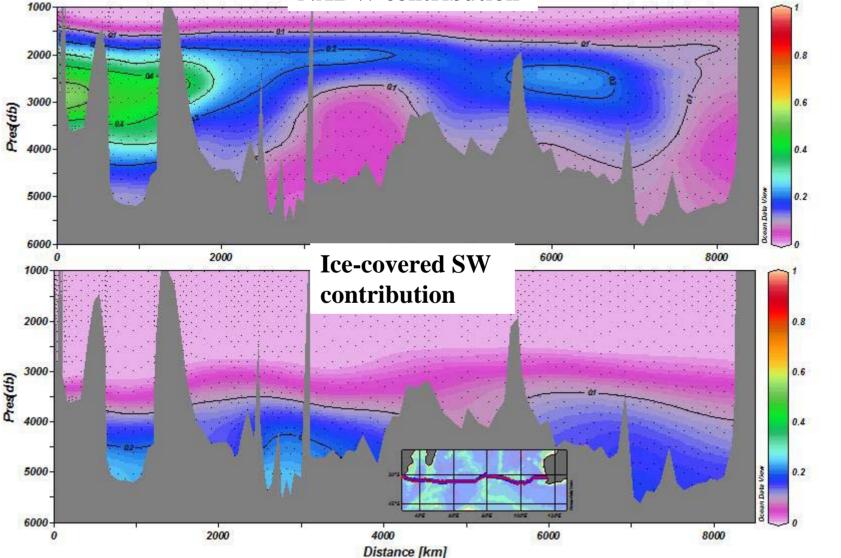
▶ P.I.: Harry Bryden (National Oceanographic Centre, Southampton, UK)

▶ Physics: temperature, salinity, ADCP, LADCP

[∧] Chemistry: oxygen, salinity, nutrients, CO₂ (pH & TA, TIC), CFCs (11, 12, 113), CCl₄.

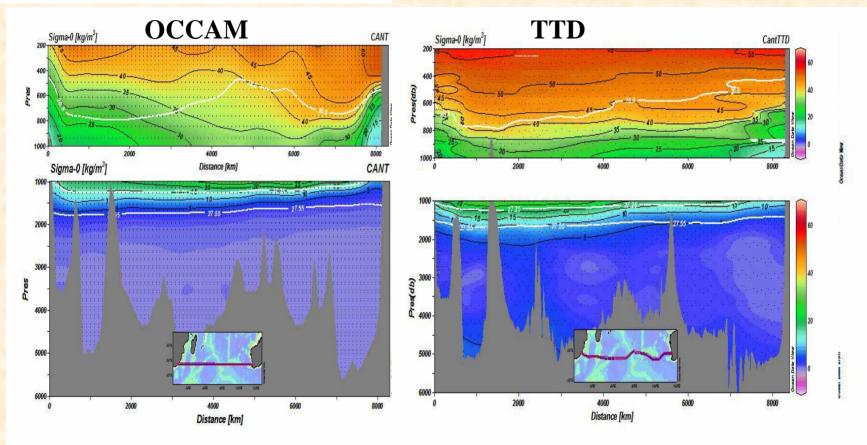
7/18

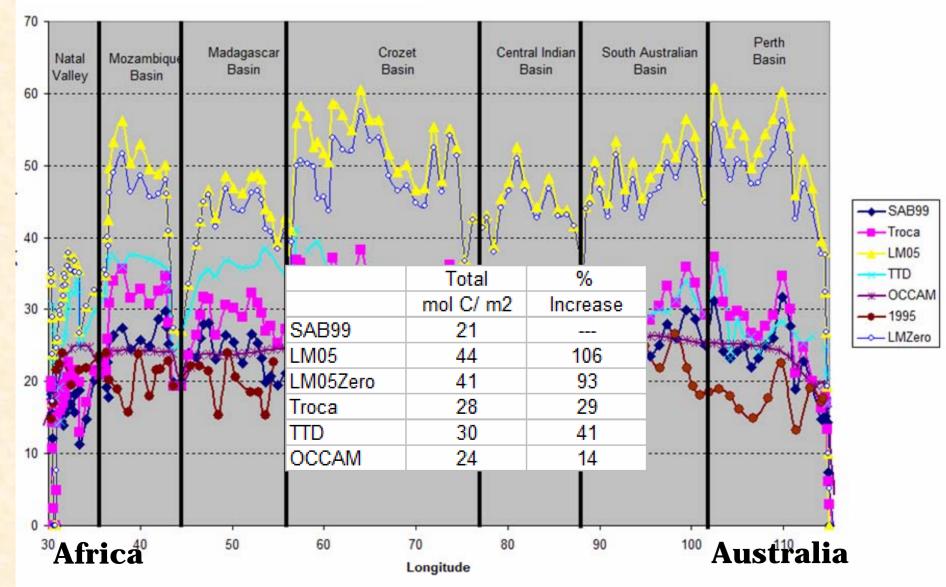
C_{ANT} **TECHNIQUES**


- 1. C_{ANT} SAB99: method by Sabine et al. (GBC,1999), using their ΔC_{Dis}
- 2. C_{ANT} LM05: method by LoMonaco et al. (JGR, 2005)

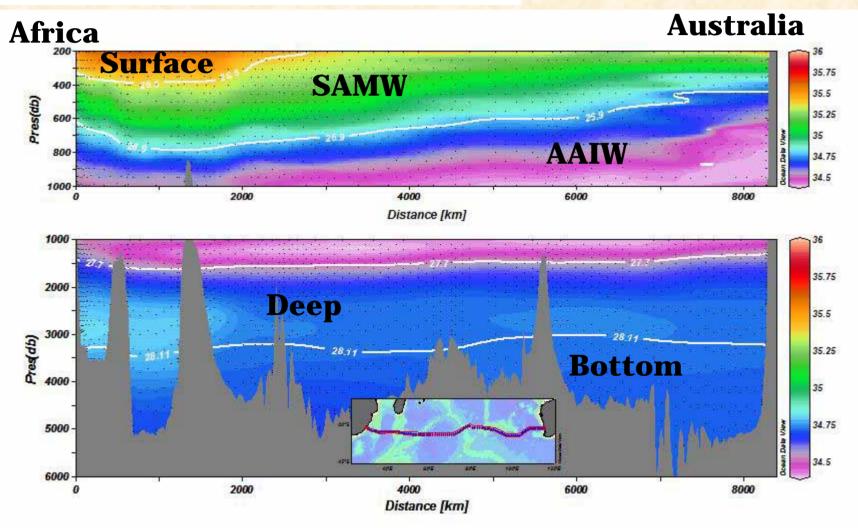
Australia

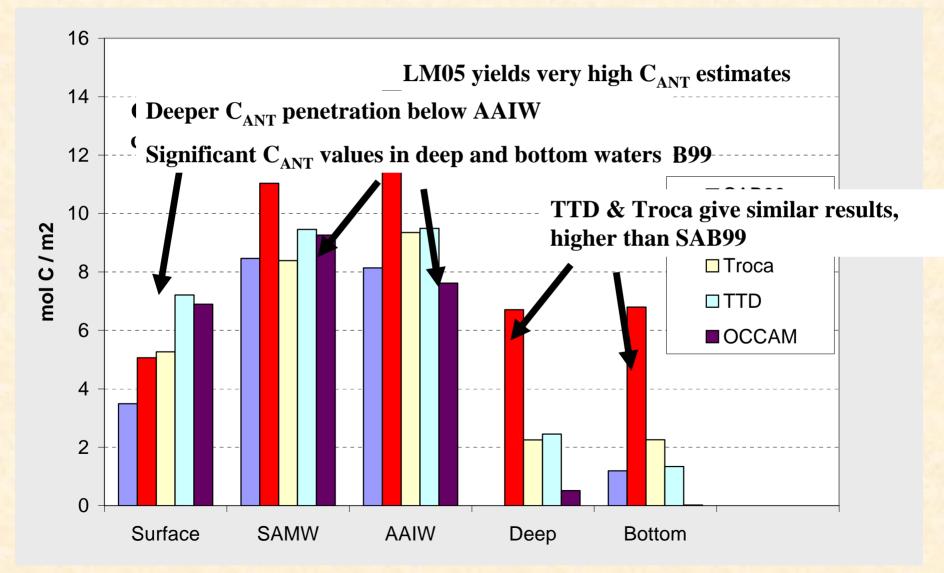
2. Back-calculation technique by Lo Monaco et al. (JGR, 2005): OMP

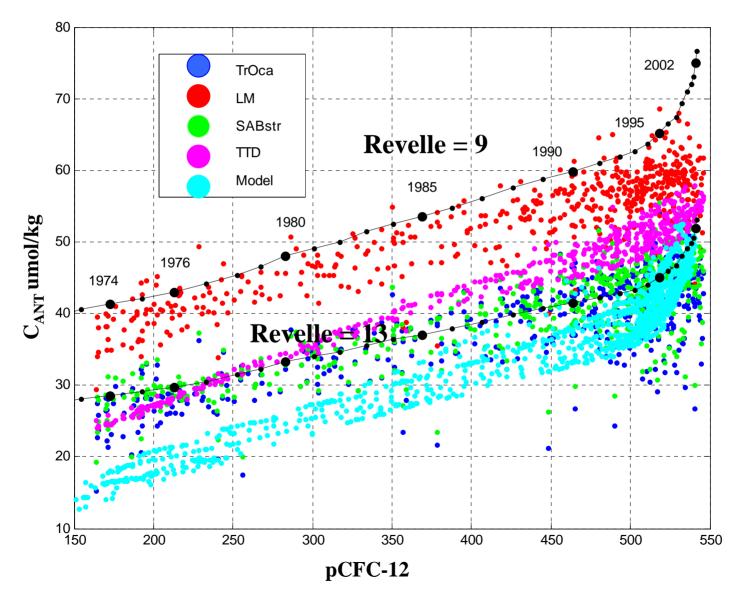

NADW contribution


C_{ANT} **TECHNIQUES**

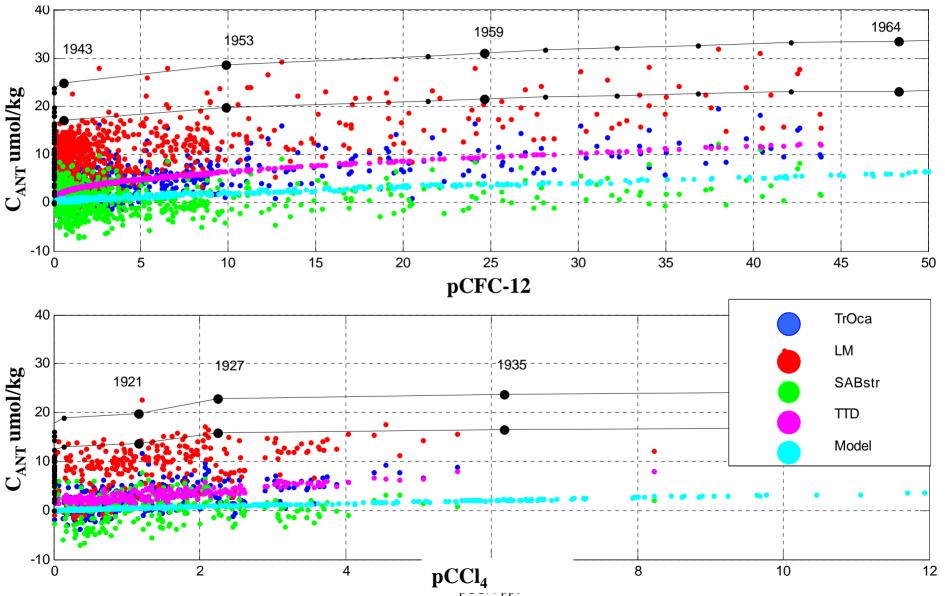
- 1. C_{ANT} SAB99: method by Sabine et al. (GBC,1999), using their ΔC_{Dis}
- 2. C_{ANT} LM05: method by LoMonaco et al. (JGR, 2005)
- 3. C_{ANT} TrOCA: Touratier & Goyet (Tellus, 2007)
- 4. C_{ANT} TTD
- 5. C_{ANT} from OCCAM model


C_{ANT} vertical distributions


Specific C_{ANT} inventories


Neutral density layers & salinity

Specific C_{ANT} inventories



Surface, SAMW waters and upper AAIW

5/18

Deep and bottom waters

Summary table

Reliability code (subjective)

1- plus

2- medium

3- low

	Upper	SAMW	AAIW	Deep	Bottom	Mean
SAB99	3	2	3	3	3	low
LM05	3	2	2	3	3	medium-
TrOCA	3	2	2	2	2	medium+
TTD	2	1	2	3	3	medium+
OCCAM	1	2	2	3	3	medium

Hypothesis:

C_{ANT} penetrates deeper than 1000 m (Sabine et al 1999) seems to be hinted by any other method

How to assess this question:

difficult: every method has uncertainties absolutely true, no method is perfect

help: relation of C_{ANT} with tracers (CFC₁₂, CCl₄) questions still arise, saturation, mixing, etc..

community should combine methods and time-evolution studies at specially sensitive regions

OPEN DISCUSSION: KEY REGION THE SO

Back-calculation technique by Sabine et al. (GBC, 1999) to estimate C_{ANT}.

 $C_{ANT} = \underbrace{\Delta C^*}_{C - AOU/R_C} - \frac{1}{2}(\Delta TA + AOU/R_N) + 106/104 \cdot N^* - C^{280} - \Delta C_{Dis} = -\Delta C_{Dis}$

 \mathbf{k} C is the current total inorganic carbon

 $\land \Delta TA = TA - TA^0$, current alkalinity - preformed alkalinity TA⁰= 378.1 + 55.22 · Sal + 0.0716 · PO - 1.236 · Tpot

▲ AOU is the Apparent Oxygen Utilization, assuming oxygen saturation

 ⊂ C²⁸⁰ is the inorganic carbon in equilibrium with the preindustrial atmosphere. C²⁸⁰ = f (Tpot, Sal, TA⁰, pCO₂₂₈₀) from thermodynamic equations pCO₂₂₈₀ = CO₂ fugacity at a 100% of water vapor pressure in uatm = f(Tpot, Sal, 280)

 C^{280} in GSS96 => constants by Goyet & Poisson (1989) & a constant pCO₂₂₈₀ = 280 uatm linearilized equation:

 $C^{280} = 2072 - 8.982 \cdot (Tpot - 9) - 4.931 \cdot (Sal - 35) + 0.842 \cdot (TA^{0} - 2320)$

 \mathbb{N} N* = (0.87 · (NO₃ - 16 · PO₄ + 2.9)) term accounting for the denitrification

ΔC_{Dis} is obtained with own CD139 data using CFC₁₂ ages and limit at 40 years

a) Old deep waters, $C_{ANT} = 0 \Rightarrow \Delta C^* = \Delta C_{Dis}$ b) In upper waters, having the age: $\Delta C_{Dis} = \Delta C^* t|_{\sigma=cte}$ $\Delta C^*_{t} = C - C_{Bio} - C_{t}$ where $C_t = f$ (Tpot, Sal, TA⁰, pCO_{2t}) pCO₂ in the atmosphere at 2002 – age (t) c) In between \Rightarrow weighted mean ΔC^* and $\Delta C^*t|_{\sigma=cte}$

c) In between => weighted mean ΔC^* and $\Delta C^* t|_{\sigma=cte}$

ΔC_{Dis} is obtained with own CD139 data using CFC₁₂ and CCl₄ ages

a) Tpot<3°C, (assumed 100% saturation) deep waters, $\Delta C_{\text{Dis}} = \Delta C^* t_{\text{CCl4}}|_{\sigma=\text{cte}}$ $\Delta C^*_t = C - C_{\text{Bio}} - C_t$ where $C_t = f$ (Tpot, Sal, TA⁰, pCO_{2tCCl4}) pCO₂ in the atmosphere at 2002 – age CCl4(t) b) In upper waters, having the CFC age: $\Delta C_{\text{Dis}} = \Delta C^* t_{\text{CFC12}}|_{\sigma=\text{cte}}$ $\Delta C^*_t = C - C_{\text{Bio}} - C_t$ where $C_t = f$ (Tpot, Sal, TA⁰, pCO_{2t}) pCO₂ in the atmosphere at 2002 – age CFC12 (t) c) In between => weigthed mean a & b

Back-calculation technique by Lo Monaco et al. (JGR, 2005):

$$C_{ANT} = C_T - C_{Bio} - C_T^{0 \text{ obs}} - (C_T - C^{Bio} - C^{0 \text{ obs}})_{REF}$$

 $C_T = measured TIC$

 $C_{Bio} = 0.73 \cdot (O_2^{\ 0} - O_2) + 0.5 \cdot (TA - TA^0) \Rightarrow biological activity variation in TIC$ $TA^0 \Rightarrow preformed TA$ $O_2^{\ 0} = O_2^{\ sat} - \alpha \cdot K \cdot O_2^{\ Sat} \Rightarrow \alpha O_2 = 12\% \text{ undersaturation}$ K = > mixing ratio of ice-covered water (OMP)

C_{0 obs} => preformed TIC currently observed in the formation area water masses

REF = reference water where no C_{ANT} should be detected.

Back-calculation technique by Lo Monaco et al. (JGR, 2005)

 $TA^{0} = k(S) TA^{0}(S) + k(N) TA^{0}(NADW)$ $C^{0,obs} = k(S) C^{0,obs}(S) + k(N) C^{0,obs}(NADW)$

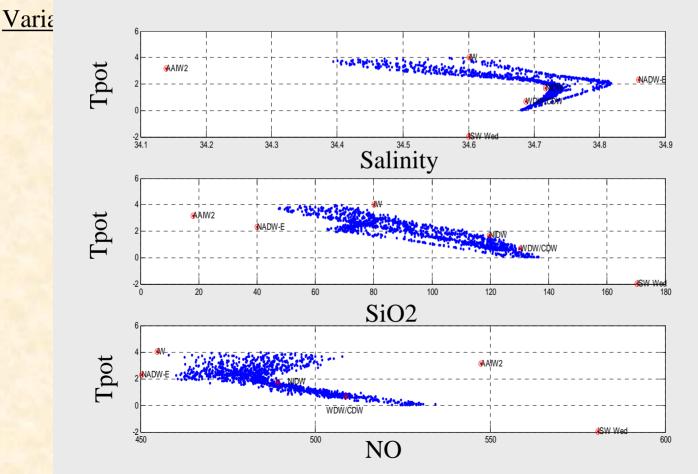
southern relationships:

winter surface data from the Atlantic and Indian oceans (WOCE and OISO cruises) $TA^{0}(S) = 0.0685 \text{ PO} + 59.787 \text{ S} - 1.448 \theta + 217.15$ (± 5.5 µmol/kg, r² = 0.96, n = 243)

 $C^{0,obs}(S) = -0.0439 \text{ PO} + 42.79 \text{ S} - 12.019 \theta + 739.83$ (± 6.3 µmol/kg, r² = 0.99, n = 428)

northern relationships

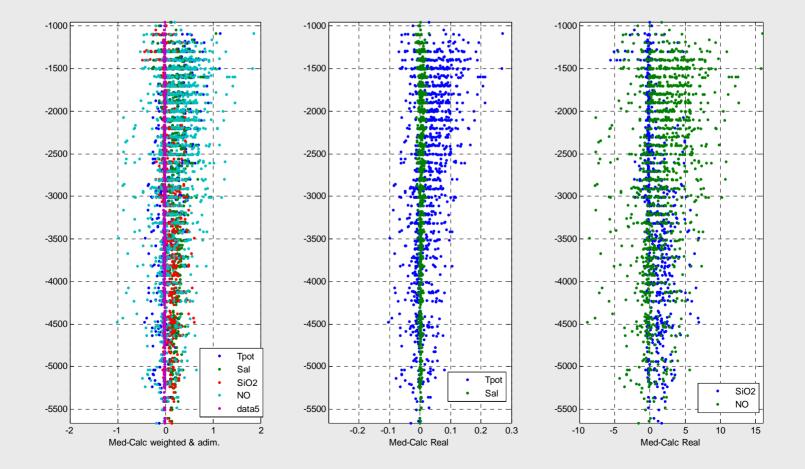
subsurface data from the North Atlantic and Nordic Seas (WOCE and KNORR cruises) $TA^{0}(N) = 42.711 \text{ S} + 1.265 \theta + 804.6$ (± 9.3 µmol/kg, r² = 0.92, n = 297) $C^{0,obs}(N) = 10.69 \text{ S} + 0.306 \text{ NO} + 1631.6$ (± 9.2 µmol/kg, r² = 0.79, n = 364)


mixing ratios of southern and northern waters:

k(S) + k(NADW) = 1 determined from OMP analysis 23/18

Back-calculation technique by Lo Monaco et al. (JGR, 2005):

OMP analysis modified from Lo Monaco et al. (JGR, 2005) Endmembers:


AAIW NADW-E NIDW Indian Water WDS/CDW ISW Weddell

24/18

Back-calculation technique by Lo Monaco et al. (JGR, 2005): OMP

	Tpot,	Sal,	SiO ₂	NO	
STD Res.	0.0481	0.0051	1.3	3	
\mathbb{R}^2	0.9979	0.9967	0.9973	0.9611	(n=1299)

Back-calculation technique by Lo Monaco et al. (JGR, 2005):

$$\mathbf{C}_{\text{ANT}} = \mathbf{C}_{\text{T}} - \mathbf{C}_{\text{Bio}} - \mathbf{C}_{\text{T}}^{0 \text{ obs }} - (\mathbf{C}_{\text{T}} - \mathbf{C}^{\text{Bio}} - \mathbf{C}^{0 \text{ obs }})_{\text{REF}}$$

REF = NADW = reference water where no C_{ANT} should be detected.

Applied to samples with more 50% NADW from OMP analysis

 $(C_{T} - C^{Bio} - C^{0 \text{ obs}})_{REF} = -54.4 \pm 1.4 \text{ umol/kg}$ (LoMonaco JGR2005 -51 umol/kg)

 $C_{ANT} = C_T - C_{Bio} - C_T^{0 \text{ obs}} - (-54.4)$

C_{ANT} TrOCA, Touratier et al (Tellus B, 2007):

TrOCA = O_2 + a · (C_T -1/2 ·TA) $a = \psi_{O2} / [\psi_{CO2} + \frac{1}{2} \cdot (\psi_{H+} - \psi_{HPO24-})]$

 C_{ANT} (TrOCA) = (TrOCA – TrOCA₂₈₀) / a

 $C_{ANT} = (O_2 + 1.279 \cdot (C_T - 0.5 \cdot TA) - \exp((7.511 - 0.01087 \cdot \theta - 781000/TA^2))/1.279)$

4. C_{ANT} TTD (Waugh et al., 2004; 2006; Tanhua et al., 2008):

- each water sample has its own "age", i.e. time since it was last in contact with the atmosphere. The sum of all these ages makes the TTD of a water sample

- the mean age (Γ) and the width of the TTD (Δ) are assumed to be of equal magnitude: realistic assumption of the relation between advective and diffusive transport in the Ocean

- C_{ANT} is an inert passive tracer where air-sea disequilibrium hasn't changed over time.

5. C_{ANT} OCCAM

- global, medium-resolution, primitive equation ocean general circulation model (Marsh et al., 2005).

- OCCAM's vertical resolution is 66 levels (5 m thickness at the surface, 200 m at depth), with a horizontal resolution of typically 1 degree.

- Advection is 4th order accurate, and the model is time-integrated using a forward leapfrog scheme with a 1 hour time-step.

- Surface fluxes of heat and freshwater not specified but are calculated empirically using NCEP-derived atmospheric boundary quantities (Large and Yeager, 2004).

- OCCAM incorporates a NPZD plankton ecosystem (Oschlies, 2001; Yool et al., 2007) which drives the biogeochemical cycles of nitrogen, carbon, oxygen and alkalinity.