#### THE AMOC IN MILLENNIAL ECHO-G CLIMATE SIMULATIONS AND FUTURE CLIMATE CHANGE SCENARIOS



#### Pablo Ortega, Marisa Montoya and Fidel González-Rouco



PALMA Research Group Dpto. Astrofísica y Ciencias de la Atmósfera Universidad Complutense de Madrid

#### International Symposium "Effects of Climate Change on the World's Oceans" Gijón 2008



#### **INTRODUCTION II**

## Control simulations explore AMOC long-term variability

### In situ measurements at 26.5° N since March 2004





Knight et al. (2005) identify an oscillatory mode where the Atlantic Multidecadal Oscillation is driven by changes in the overturning circulation

#### **MODEL AND EXPERIMENTS I**

#### THE ECHO-G MODEL

 $\rightarrow$  Atmospheric Component ECHAM4:

T30 resolution (3.75° x 3.75°), 19 vertical levels

 $\rightarrow$  Oceanic Component HOPE-G:

T42 resolution (2.8° x 2.8°), 20 levels in depth

## HOPE-G

The Hamburg Atmosphere-Ocean Coupled Circulation Model E C H O - G

#### THE SIMULATIONS

- CTRL → 1000 yr control simulation
- FOR1, FOR2 → Forced simulations of the last millenium
- A2, B2 → IPCC scenario simulations



The simulations in literature: González-Rouco et al. (2003,2006); Zorita et al. (2003,2005); von Storch et al. (2004); Beltrami et al. (2006); Gouirand et al. (2007); Stevens et al. (2007)

#### **MODEL AND EXPERIMENTS II**

#### THE FORCING FACTORS



#### AMOC CLIMATOLOGY AND TEMPORAL EVOLUTION I



#### The circulation is realistic and close to estimates by Ganachaud & Wunsch (2000); 15±2 Sv

 $1Sv = 10^{6}m^{3}/s$ 

#### **AMOC CLIMATOLOGY AND TEMPORAL EVOLUTION II**



The AMOC exhibits a weakening beginning in the industrial era, and intensifying in the future change scenarios

#### **MODES IN HIGH-FREQUENCY I**

**Correlation maps MOIs – SLP and wind stress** 



The patterns are common to the three millennial simulations

#### **MODES IN HIGH-FREQUENCY II**

Correlation maps MOIs – SLP and wind stress (FOR1)



**Regression patterns MOIs – Streamfunction** (FOR1)











#### **MODES IN LOW-FREQUENCY I**

- In the low frequency it is identified a propagating mode that differs in some extent from CTRL to the forced runs.
- Positive overturning anomalies appear in the sinking regions of the North Atlantic several years before a MOI maximum (7-8 yr).
- When the lag is 0 the overturning reaches its maximum anomalies and extension.
- About 8 years after the maximum the overturning in the sinking region becomes negative.
- The positive anomalies move southwards in latitude in CTRL, while in the forced runs they are confined to the deep ocean.



#### **Regression patterns MOI-Streamfunction**



#### **MODES IN LOW-FREQUENCY I**







FOR2

-0.4 -0.2 0

0.2 0.4 0.8 0.8 I

1.2

#### **MODES IN LOW-FREQUENCY II**

#### **Correlation maps MOI – Density anomalies**

















#### **SUMMARY AND CONCLUSIONS**

- All simulations show a realistic AMOC, with maximum values close to estimates.
- **II.** During the industrial era the forced runs exhibit a weakening in the AMOC that is intensified in the future scenario simulations.
- **III.** The high-frequency modes are common to the three simulations and forced by various wind regimes.
- **IV.** In the low-frequency two propagating modes are identified, one in the forced runs and the other in CTRL. Both are related to the irruption of density anomalies in the North Atlantic sinking region several years before the MOI maximum.

# THE END

#### **MODES IN LOW-FREQUENCY I**







The propagating mode differs CTRL in in some extent from the forced ones. The main differences occur in the deep ocean, where the forced runs exhibit higher variability.



0.4

#### **MODES IN LOW-FREQUENCY**



500

1000-1500-2000-

4500 5000

-0.4 -0.2 0



0.2 0.4 0.6 0.8 1 1.2

CTRL





#### **MODES IN LOW-FREQUENCY II**

#### **Density anomalies**





-0.6 -0.5 -0.4 -0.2 0.2 0.4



V6





Laa

#### **MODES IN LOW-FREQUENCY III** Temperature anomalies



#### **MODES IN LOW-FREQUENCY IV** Salinity anomalies





#### OUTLINE

- I. Introduction
- **II. Model and Experiments**
- III.AMOC climatology and temporal evolution
- **IV.Modes in high-frequency**
- V. Modes in low-frequency
- **VI.Summary and conclusions**