

Five life-history strategists and regime shifts (RS)

Strateg ist	Species examined	Expected responses to RS	Reasons	Remarks
Opport unistic	Sardine	Immediate and drastic	Short lifespan and high reproductive rate	
Interm ediate	Walleye pollock	Oscillatory	Juveniles are opportunistic but good year-classes followed by strong density- dependence	Cannibalism (esp. Eastern Bering Sea)
Salmo nid	Pink salmon	Immediate and drastic but twice, <i>K</i> respond quickly	Fresh water and marine habitats Empirical evidences	Artificial propagation
Periodi c	Sablefish, Halibut	Immediate but gradual	Low frequency variation in spawner biomass	Older ages of recruitment
Equilib rium	Dogfish	Slight	Low fecundity and stable early survival rate	Most susceptible to fishing or deteriorations of environments

PDO, Victoria, AO and SST regime shifts (regime shift years: after Yasunaka and Hanawa, 2002)

Summer mesozooplankton (Tadokoro 2005 unpublished)

Wintertime climate and winter-spring production: 1976/77RS

After 1976/77 Regime shift

PDO pattern dominated

(modified from Chavez et al 2003. * information of the western North Pacific added by Chiba)

Wintertime climate and winter-spring production: 1988/89RS

Possible responses to a climatic regime shift

(modified from Hanawa, 1998)

Measures of responses (Japanese sardine)

Japanese and California sardine catch and SST anomaly

SST anomaly is opposite except after the 1988/89 RS

Kuroshio Extension winter SST Noto (2003)

Low SST> positive LNRR > high catch

Scripps pier winter SST High SST> positive LNRR > high catch

ftp://ccsweb1.ucsd.edu/shore/active_ data/lajolla_sio/temperature

Sardine (opportunistic strategist) recruitment = age 0

- Regime effect is usually evident in LNRR, RPS and P/B; most prominent in LNRR
- Pulse-like response of LNRR (within + 3)
- RPS since 1980's: Japanese sardine < California sardine
- SST of Kuroshio and California is opposite except for 1990s when Japanese sardine collapsed and California sardine recovered

Connectivity to a predator

Higher SST would enhance arrival of skipjack and biomass of Japanese common squid

Temperature hypotheses for sardine/anchovy cycle

- Optimum temperature under sufficient prey (Takasuka et al., 2004 PICES, Takahasi et al., 2004 PICES)
- Connectivity to tropical predators (Yatsu et al., 2005 PICES)

Walleye Pollock (intermediate strategist) recruitment = age 3-4

Pollock in Bering Sea (Hunt et al., 2002)

Oscillating Control Hypothesis

G.L.Hunt, Jr. and P.J. Stabeno, Progress in Oceanography 55, 2002

Pink salmon (salmonid strategist) recruitment = age 2

*Catch data (Eggers et al. (2004 PICES ESR) lagged by two years

Decadal signal and pulse-like responses of LNRR to some RS in Russian and Hokkaido stocks

No distinct response of LNRR to RS in BC stock

LNRR is milder (<+- 1) than sardine and pollock (but variable in Alaskan populations: Pyper et al. 2001 see next)

Halibut (periodic strategist) recruitment = age 6

Low frequency RPS variability; could be due to the older age of recruitment or nature of periodic strategists?

Biomass trend lagged almost two decades from RPS

Sablefish (periodic strategist) recruitment = age 4

Year-class index, (C/B)x10

recruitment of periodic strategist is gradual rather than shifts

Conceptual model of sablefish year-class

(McFarlane and Beamish 1992; McFarlane et al. 1997; King et al. 2001)

Dogfish (equilibrium strategist)

Stable biomass since 1970s?

