Mechanisms of Fish Population Dynamics to

 Climatic Forcing: Comparative Study on Selected Stocks Representing Five Life-history Strategies in the North Pacific

Akihiko Yatsu and CFAME* Task Team

* Climate Forcing And Marine Ecosystems

Five life-history strategists and regime shifts (RS)

Strateg ist	Species examined	Expected responses to RS	Reasons	Remarks
Opport unistic	Sardine	Immediate and drastic	Short lifespan and high reproductive rate	
Interm ediate	Walleye pollock	Oscillatory	Juveniles are opportunistic but good year-classes followed by strong density- dependence	Cannibalism (esp. Eastern Bering Sea)
Salmo nid	Pink salmon	Immediate and drastic but twice, K respond quickly	Fresh water and marine habitats Empirical evidences	Artificial propagation
Periodi c	Sablefish, Halibut	Immediate but gradual	Low frequency variation in spawner biomass	Older ages of recruitment
Equilib rium	Dogfish	Slight	Low fecundity and stable early survival rate	Most susceptible to fishing or deteriorations of environments

PDO, Victoria, AO and SST regime shifts

(regime shift years: after Yasunaka and Hanawa, 2002)

Summer mesozooplankton (Tadokoro 2005 unpublished)

Wintertime climate and winter-spring production: 1976/77RS

After 1976/77 Regime shift

PDO pattern dominated

Wintertime climate and winter-spring production: 1988/89RS

After 1988/89 Regime shift

Victorial Pattern dominated

Gulf of Alaska cooled
Northward flow -? stratification light biol. production -
B.C. coast coastal upwelling
warm water copepods + (by advection?)

California coast

Central Pacific
wind -? warmed nutrients biological production -

Southward current nc coastal upwelling nc
propagation of warm temperature anomaly by Rossby wave
nutrients nc biol. production nc

Kuroshio/subtropical warmed
wind stress -
vertical mixing -
nutrients -
biol. producttion: win $+\mathrm{sp}-$
timing of spring bloom: early

* changes in the Kuroshio occurred with 5~6 yr lag after the regime shifts
(Fig by Chiba based on various sources)

Possible responses to a climatic regime shift

 (modified from Hanawa, 1998)

Measures of responses (Japanese sardine)

Vertical lines: regime shift years detected in SST field over the Pacific (Yasunaka and Hanawa, 2002) except 1998

Ricker curve

P/B: Production / Biomass $(\mathrm{P} t=\mathrm{B} t+1-\mathrm{B} t+$ Catcht $)$

RPS: Recruitment number per spawning biomass

LNRR=

In (Recruitment Residuals)

Japanese and California sardine catch and SST anomaly

Scripps pier winter SST High SST> positive LNRR > high catch
ftp://ccsweb1.ucsd.edu/shore/active_ data/lajolla_sio/temperature

Sardine (opportunistic strategist) recruitment = age 0

- Regime effect is usually evident in LNRR, RPS and P/B; most prominent in LNRR
- Pulse-like response of LNRR (within + - 3)
- RPS since 1980's: Japanese sardine < California sardine
- SST of Kuroshio and California is opposite except for 1990s when Japanese sardine collapsed and California sardine recovered

Connectivity to a predator

Sardine
Oyashio
Winter

Spring

Higher SST would enhance arrival of skipjack and biomass of Japanese common squid

Skipjack

Temperature hypotheses for sardine/anchovy cycle

- Optimum temperature under sufficient prey (Takasuka et al., 2004 PICES, Takahasi et al., 2004 PICES)
- Connectivity to tropical predators (Yatsu et al., 2005 PICES)

Sea temperature

Walleye Pollock (intermediate strategist) recruitment = age 3-4

$\begin{array}{lllllllllll}1950 & 1955 & 1960 & 1965 & 1970 & 1975 & 1980 & 1985 & 1990 & 1995 & 2000\end{array}$

Catch and biomass trend of pollock stocks are alike, except for EBS, but differs in peak periods

Response of LNRR is much milder than in sardine (almost within +-1)

7519801985199019952000

Pollock in Bering Sea (Hunt et al., 2002)

Oscillating Control Hypothesis

Cold Regime

(Bottom-Up Regulation)

Beginning of Warm Regime
(Bottom-Up Regulation)

Beginning of Cold Regime
(Both Top-Down and Bottom-Up Regulation)

Pink salmon (salmonid strategist) recruitment = age 2

*Catch data (Eggers et al. (2004 PICES ESR) lagged by two years

Decadal signal and pulse-like responses of LNRR to some RS in Russian and Hokkaido stocks

No distinct response of LNRR to RS in $B C$ stock

LNRR is milder (<+- 1) than sardine and pollock (but variable in Alaskan populations: Pyper et al. 2001 see next)

Halibut (periodic strategist) recruitment $=$ age 6

Low frequency RPS variability; could be due to the older age of recruitment or nature of periodic strategists?

Biomass trend lagged almost two decades from RPS

Sablefish (periodic strategist) recruitment = age 4

Pulse-like responses of RPS or yearclass index to some RS years

Decadal signal is somewhat evident

Fig. A2.15 Fluctuations in abundance of juvenile rockfish off central California, as measured by catch rates in midwater trawls. Preliminary results for the 2004 survey appear similar to 2002.

Decadal pattern of age-0 recruitment of California rock fishes (FERRRS Report): recruitment of periodic strategist is gradual rather than shifts

Conceptual model of sablefish year-class

(McFarlane and Beamish 1992; McFarlane et al. 1997; King et al. 2001)

Dogfish (equilibrium strategist)

Over fishing?

British Columbia

Strait of Georgia, Canada

Stable biomass since 1970s?

