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Goal: updated overview of subarctic
Pacific zooplankton ecology

• What we knew at the start of CCCC 
• What we’ve learned during CCCC 

(especially from between-region and 
between-year comparisons)

• Some future directions 
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What we knew at the start of CCCC (1995-97)

“Average”Zooplankton:
• Basin-scale distribution 

of biomass
• Dominant species and 

their distributions
• Seasonal life history (in a 

few places)
• Diet and predators (in a 

few places)

“Average” environment:
• Water properties
• Mean circulation 
• Seasonal cycles
• Contrasts East vs. West

Increasing awareness of:
• HNLC regions and Fe 
• Climate variability (Regimes 

and ENSO)
• Climate trends and CO2
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Basin-scale distribution of total 
zooplankton biomass

(Mackas & Tsuda 1999, original figure by K. Tadokoro)

• Margins > Gyres; West > East 
• ~Follows distribution of primary productivity & 

chlorophyll
• North - South gradient changes with season (above is a 

summer picture)
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Lists of dominant zooplankton:
“Short & Similar” in all deepwater areas

“Boom & Bust”:
• Pteropods

(2-3 spp.)
• Salps

(2 spp.)
• Hyperiid Amphipods

(1-3 spp.)
• Medusae & 

siphonophores
(1-4 spp.)

Always abundant:
• “Interzonal” copepods 

(4 spp., 4-10mm)
• Smaller copepods 

(~6 spp., 0.5-3 mm)
• Euphausiids 

(1-3 spp., 1-3 cm)
• Chaetognaths 

(2 spp., 1-3 cm)
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Dominant ‘oceanic’ species are trans-Pacific 
Some ‘nearshore’ species restricted to E or W

Example: Euphausiids (Brinton, Nemoto, Mauchline)

E. Pacifica (Brinton & Ohman)

T. spinifera (B. Marinovic)

T. Longipes
(Hopcroft)
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Interzonal migrant copepods: Dominate 
total biomass at all deep water locations 

in spring-summer
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Interzonal copepods: distinctive life history
(C. Miller, J. Fulton, A.K. Geynrich)

• Annual life cycle (usually)
• Prolonged & deep dormancy 

from summer-winter
(timing & life-stage vary )

• Depth & time partition the upper 
ocean during growing season
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The life cycle of 
the interzonal
copepods is a 

main driver of the 
strong seasonality 

of upper ocean 
zooplankton 

biomass
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Diet & predators
(vary with life stage, 
location & season)

Eat:
• Large phytoplankton 

(often unavailable)
• Microzooplankton
• Smaller 

mesozooplankton
(Dagg, Gifford, Nemoto, 

Brinton, others)

Eaten by:
• Other zooplankton
• Micronekton
• “Small” pelagic fish

(including juvenile pink, 
chum & sockeye salmon)

• Whales & seabirds
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Environment has strong E-W contrasts, 
despite E-W homogeneity of zooplankton

Western Subarctic Pacific 
surface ocean  has:

• Colder T°C in winter
• Bigger seasonal range
• Much tighter N-S 

gradients, and 
• Convergence of warm and 

cold currents
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Strong environmental contrasts (continued)

Chlorophyll & primary 
productivity are:

• Highest (by far) along margins
• Higher in subarctic than 

subtropics
• Higher in western than eastern 

subarctic

Causes:
• Proximity to land sources of Fe 

and Si
• Depth of winter mixing
• Timing of spring stratification
• Eddies & upwelling
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Strong interannual variability

Three dominant time 
scales:

• 1-2 year ENSO

• Shifts between 
more prolonged 
warm/cool ‘regimes’

• Overall warming 
trend



14

Questions and motivations:

Q. How is spatial homogeneity and interannual-to-
decadal stability of the subarctic Pacific zooplankton 
maintained?

A1. It isn’t, entirely:
• Large interannual variability of total biomass & 

ranking among dominant species
• Life cycles, growth patterns & distributions

are more plastic than  previously realized
A2. Important clues about resilience and its limits
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What have we learned about 
zooplankton during CCCC??

• Role in biogeochemical cycles & food webs of 
HNLC  and coastal regions

• Low-frequency variability of  biomass (“how 
much”)

• Natural history of many more taxa.
• Within-species variability of body size 
• Within-species variability of phenology

(“when”?)
Changes in community composition (“who”?)

• A start on between-region comparisons of time 
series
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Biogeochemistry and “export” of 
zooplankton biomass

• 2 major iron enrichment experiments in 
HNLC subarctic (SEEDS, SOLAS/SERIES)

• Studies of exchange between margins and 
deep basins (JGOFS, GLOBEC, Eddies)



17

Interzonal copepods are large contributors to 
Carbon Pump & to nutrition of mesopelagic zone

Mackas & Tsuda (1999)

Kobari et al. (2003)
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Variability of total biomass

• Research started before CCCC (Brodeur & Ware 
1992, Roemmich & McGowan 1995, Sugimoto & 
Tadokoro 1998)

• But much more has been published recently
• Time series from ocean margins tend to be more 

interpretable, because more frequent sampling 
reduces aliasing of seasonal cycle. 
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Zooplankton biomass variability:
Amplitude - 3 to 5 fold range
Important time scales: interannual, ‘regimes’, ‘climate trend’ 
Covariance with physics/climate (& ‘fish’)

California Current
McGowan et al 2003Oyashio region, Chiba 2005
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Does more detailed zooplankton biology 
provide additional insights?? Yes!!

Elements:
Body size variation

- development rate and nutrition
Life cycle timing

- match-mismatch with changing seasonality 
- match-mismatch with prey & predators

Community composition & distribution shifts
- valuable tracer of movement and origin
- what works & what doesn’t under differing 
environmental regimes
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Now know the life history (distribution, 
diet & timing) of many more taxa.

Praise our Japanese colleagues (especially 
Hokkaido University!!):

Ikeda, Kobari, Tsuda, Saito, Yamada, 
Kaeriyama, Ozaki, Yamaguchi, Padmavati, 
Iguchi, Terazaki, Kotori, ….. 
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Korean
coastal waters BC & Oregon

CPR & Line P

Project ODATE
CalCOFI/IMECOCAL

North Pacific regions developing 
‘rich’ time series
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Body size, temperature, nutrition 
and development rate
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Variation of body size

• Size mostly unimodal within species & region, but N. 
flemingeri is bi-modal in west and north

• Larger N. flemingeri size is associated with a biennial 
life cycle and two dormant periods

• Genetic? Controlled by within-year environment?
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Interannual variation of body size
(since pioneering work by Miller et al., Kobari & Ikeda)
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Phenology (seasonal phasing of 
development)
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Variation of life cycle timing: 1-2 month variation 
in seasonal peak biomass in eastern subarctic

• Narrow annual biomass peak in the subarctic Pacific coincides with peak 
abundance of C4-C5 Neocalanus plumchrus

• Earlier in years with earlier & stronger thermal stratification
• Match-mismatch implications for seasonal planktivores

Mackas Batten & Trudel (2006)
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Timing anomalies are correlated 
over much of the Alaska Gyre

• N Pacific Continuous 
Plankton Recorder 
surveys began in 1997

• CPR data show a S⇒N 
progression of Neocalanus
development (Batten et al 
2003)

• Interannual anomalies are 
superimposed on the 
spatial trend, and are 
coherent over a large area

Batten et al. 2003; Mackas Batten & Trudel 2006
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Changes in species composition
&

LME-scale spatial comparisons
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1. Korean coastal regions (3 seas)
(from Rebstock & Kang 2005)

At decadal time scale, all 3 regions and several taxa share 
similar timing of highs and lows

Chaetognath & Euphausiid
(mode 1: 23.3% & 20.3%)

Zooplankton biomass
(mode 1: 20.2% )

Amphipoda concentration
(mode 1: 25.8% )

Copepoda concentration
(mode 1: 20.3% )



31

2. California Current System
• ∆s in total 

biomass (left) 
often coincide 
with ∆s in 
species mix 
(right)

• Both data types 
suggest strong 
∆s ~ 1958, 1976, 
1990, 1999

• Alongshore 
correlation scale 
for species mix is 
~600-800 km 
(Oregon to 
Vancouver 
Island)

King et al 2005 (PICES Regime Shift AP); Mackas 2006
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Update on Northern Calif. Current (BC & OR)

• The post-1999 “cool 
regime” began to 
decay in 2003

• By 2005, water 
properties and 
zooplankton look 
much like 1997-1998 
(but without major 
ENSO forcing)
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Correlation & synchrony at larger scales?? 
Do zooplankton mimic sardines & anchovies (or vice 

versa)?

(Perry, Batchelder et al. 2004)

C
al

an
us

?
Euphausi

a?
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⇒ New SCOR Working Group 
“Global comparison of zooplankton time series”

Formed early 2005
Members from PICES :

H. Batchelder
D. Checkley
S. Chiba
Y-S. Kang
D. Mackas (co-chair)
M. Ohman
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My own very preliminary 
“synthesis” of WG125  

(will evolve):

1. Scale of zooplankton spatial correlation 
(distance over which a similar ‘change’ 
occurs at a similar time) is proportional to 
event duration

2. For 5-20 year time scale the correlation 
length is ~1000 km

3. ‘Synchrony’ scale (‘change’ of differing 
variables, but similar duration and onset 
timing) may be trans Pacific, but probably 
not global
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Other FUTURE directions??

The mesopelagic zone as over-winter food 
store: Links between interzonal zooplankton, 
mesopelagic micronekton, and pelagic 
predators 
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Other FUTURE directions??

Constraints and plasticity of a multi-stage 
life cycle, in which each stage has different 
opportunities and risks

S.Song 2005deYoung et al 2005
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Other FUTURE directions??

Broader application in zooplankton research
of ‘Bakun Triad’ concepts (Bakun 1996)

Aggregation Retention

Enrichment
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Finis
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