

The Bering Sea Project BEST/BSIERP Research Program

FEAST

Importance of Seasonal Sea Ice:

Ice algae: Importance to early reproduction in copepods

Both *Calanus* spp. and *T. raschii* have higher ingestion when feeding on ice algae (green) than when feeding on ambient water column phytoplankton (blue)

bsierp.nprb.org

BEST-BSIERP Bering Sea Project

Campbell, Lessard, Ashjian

Prey Fields and temperature – foraging potential for an 8 cm (age 0) pollock

July 2004 (warm)

July 1975 (cold)

July 2040 (warm)

July 2008 (cold)

Linking foraging and bioenergetics into functional responses

Pollock and euphausiid densities

Modeled age 5 pollock biomass (colored contours) and 0-300m integrated euphausiid density (color field) for July, 2004. The location of primary pollock concentrations along the northwest shelf break and in the Unimak Pass area shows a strong correspondence with historical distributions.

Walleye Pollock

July 2004

Bathymetry 100, 200 m Póllock Biomass 2004-07-04 12:00:00Z

Pacific Cod

PACIFIC COD BIOMASS - 2004-07-04 12:00:00Z Bathymetry 100, 200 m

Arrowtooth Flounder

July 2004

ARROWTOOTH FLOUNDER 2004-01-11 12:00:00Z Bathymetry 100, 200 m

Prey Density

Seasonal cycle: coupled versus uncoupled

Results Examined

DEPTH (m) : 0 to 40 (averaged)

DEPTH (m) : 0 to 40 (averaged)

2009 temp data

FERRET Var. 6.71 HQAA/PMEL TNAP 15-APR-2012 11 24:41

Measured 2009 summer groundfish survey 0-4m water temperature (top left) and ROMS modeled survey temperature (top right), data-model anomalies (bottom).

While there is still a pattern in the resulting anomalies, the overall mean water temperature anomaly is very near zero.

DEPTH (m) : 0 to 40

Focus on dynamic habitat (e.g. Barbeaux, Spencer et al.)

Focus on dynamic habitat (e.g. Barbeaux, Spencer et al.)

Age 3+ pollock biomass distribution JULY 1 AUGUST 15

2004 (HOT)

2008 (COLD)

Modeling fish and Feb 15 fisheries catch

Catcher-Processor pollock catch

Note: Catch and Biomass color scales differ by orders of magnitude.

BES

Strengths

- Functional responses emergent, tied to mechanisms to expand beyond range of current correlations
- Tied to explicit, dominant physical processes
- Considerable advances in modeling ice dynamics and ice-related productivity
- Will predict fisher responses on a community level

Issues

- It's a big, big model
 - Computationally challenging (for a fisheries model)
 - Needs lots of parameters
 - Still needs considerable data comparison

"Competing" methods for recruitment examination

