The Bering Sea Project BEST/BSIERP Research Program

Economics \& spatial fisheries

fish seabirds, marine mammals

FEAST

11 ages/ 15 lengths high detail

15 lengths

 medium detailbiomass pools low detail

FEAST

Importance of Seasonal Sea Ice:

Ice algae: Importance to early reproduction in copepods
Calanus spp. Adult Females

Both Calanus spp. and T. raschii have higher ingestion when feeding on ice algae (green) than when feeding on ambient water column phytoplankton (blue)

FEAST

Prey Fields and temperature - foraging potential for an 8 cm (age 0) pollock

Linking foraging and bioenergetics into functional responses

Useful consumption (joules) $=\mathrm{f}(\mathbf{V}, \mathrm{T}, \mathrm{L})$ Respiration (joules) $=\mathrm{A}_{\mathrm{v}} \mathrm{V}^{\mathrm{Bv} ~}{ }^{*} \mathrm{f}_{\mathrm{r}}(\mathrm{T})$

Pollock and euphausiid densities

Modeled age 5 pollock biomass (colored contours) and 0-300m integrated euphausiid density (color field) for July, 2004. The location of primary pollock concentrations along the northwest shelf break and in the Unimak Pass area shows a strong correspondence with historical distributions.

Pacific Cod

July 2004

Arrowtooth Flounder

July 2004

Seasonal cycle: coupled versus uncoupled

NPZ $\longrightarrow>$ Fish
NPZ <—> Fish

Med \& Large Copepod Biomass in habitat area

Euphausiid Biomass in habitat area

Results Examined

Original plan

Hindcast (1970-2005)
Forecast (2005-2039)

Realized results
Hindcast + field years (1970-2010)
Forecast NPZ only (2005-2039)

Modeled water temperature results

Measured 2009 summer groundfish survey 0-4m water temperature (top left) and ROMS modeled survey temperature (top right), data-model anomalies (bottom).

While there is still a pattern in the resulting anomalies, the overall mean water temperature anomaly is very near zero.

2009 temp_model run 16-1weekaves

DEPTH (m) : 0 to 40

Focus on dynamic habitat (e.g. Barbeaux, Spencer et al.)

Focus on dynamic habitat (e.g. Barbeaux, Spencer et al.)

Age 3+ pollock biomass distribution
JULY 1 AUGUST 15

2004 (HOT)

2008 (COLD)

Modeling fish and

Feb 15 fisheries catch

Feb 16

Feb 17

Feb 18

Feb 19

Note: Catch and Biomass color scales differ by orders of magnitude.

- Strengths

- Functional responses emergent, tied to mechanisms to expand beyond range of current correlations
- Tied to explicit, dominant physical processes
- Considerable advances in modeling ice dynamics and ice-related productivity
- Will predict fisher responses on a community level
- Issues
- It's a big, big model
- Computationally challenging (for a fisheries model)
- Needs lots of parameters
- Still needs considerable data comparison

"Competing" methods for recruitment examination

Measured Ocean Conditions (SST, bottom temp, wind, surveyed predators)

Correlations with single species recruitment from assessment

Forecast with
 correlates + error "measured" from IPCC climate models

