FUTURES 2014 WHAT CAN DECISION ANALYSIS DO FOR YOU?

What do they have in common?

Complex Science Uncertainty F Intense Public Scrutiny Tough Trade-offs Jurisdictional Overlap Polarized Multiple Stakeholders Values HARD DECISIONS

The Idea

When you frame your problem as a decision – a choice with multiple objectives and alternative courses of action – it changes your point of entry into the problem and, consequently...

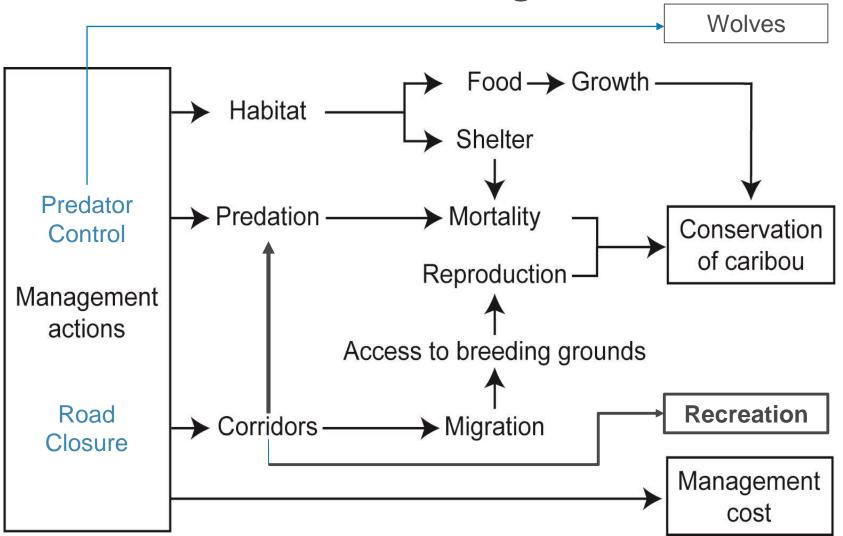
... it changes everything you do

- The make up of your project team
- The allocation of resources
- The collection of information
- The focus of uncertainty analyses
- The timing and methods for engaging stakeholders

A Species Recovery Plan

Scientific studies

Decision relevant studies


Sketch the Decision

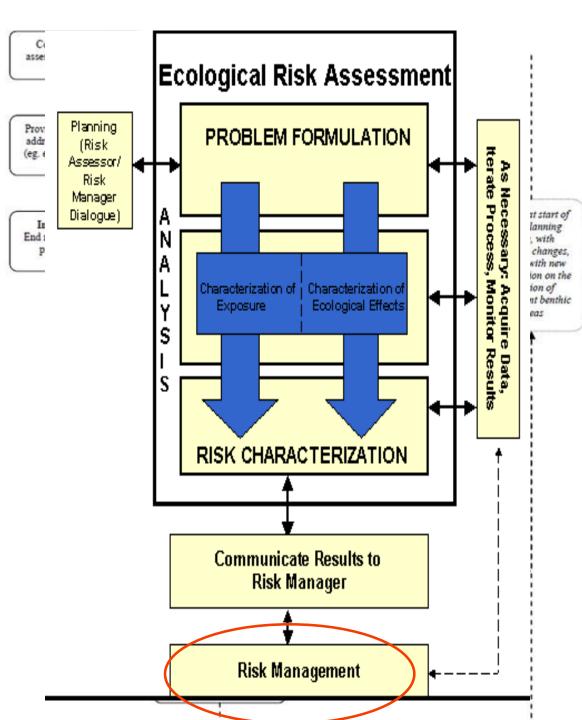
Pre-Sketch Framing

Objectives	Baseline Studies
abundance	\checkmark
probability of persistence	\checkmark
habitat	\checkmark
food	\checkmark
mortality	\checkmark

Influence Diagram

Post Sketch Framing: A Consequences Table

	Habitat Protection	Predator Control	Road Closures
Caribou			
Wolves			
Recreation			
Local Business			
Cost to Government			

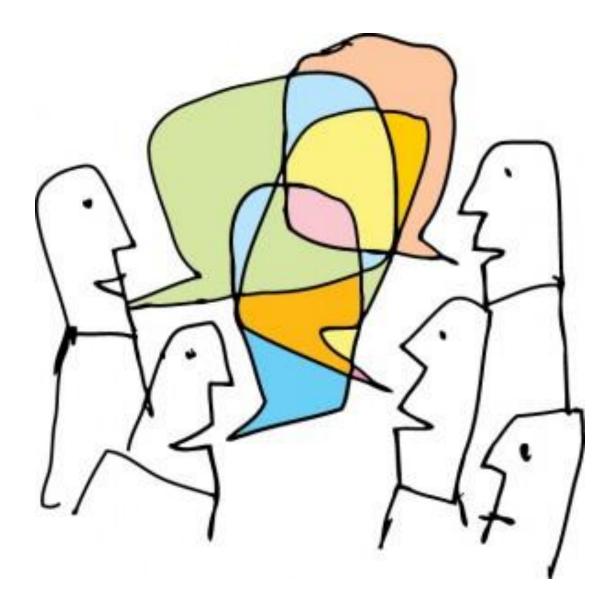

Or...Kai's example... A Consequences Table

	ΙΤQ	Derby	Other?
Stock sustainability			
Total economic value			
Coastal employment			
Business ownership			
Subsistence catch			

Key Message: Sketch the Decision

But there's little guidance on decision making....

Today

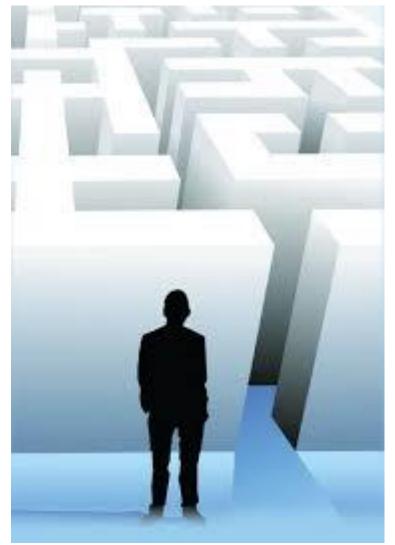

- Decision Traps
 - Barriers to using good science in decision making
- Structured Decision Making
 An approach from the decision sciences
- Key Messages

Some traps that prevent the uptake of science in decision making

DECISION TRAPS CAN YOU NAME THEM?







Common Decision Traps

- Working in Silos
- Lack of Level Playing Field
- The Power Play
- Ambiguity
- Gut Feel
- Anchoring & Positioning
- Groupthink
- Hostage-taking
- The Goldilocks
- The Stall and Study
- The End Run

U.S. Fish & Wildlife Service Structured Decision Making

U.S. Fish & Wildlife Service **Knowledge and Learning**

TRIPLE BOTTOM LINE AND STRUCTURED DECISION-MAKI A CASE STUDY OF BC HYDRO

The skills to make better PLAY decisions are within your reac Multi-Stakeholder Planning Using a Structu

INTRODUCTION Public sector, private sector and non-governmental organizations are increasingly adopting sustainability or triple bottom line (TBL) policies, and working to embed them into everything they do, including organizational decision-making.

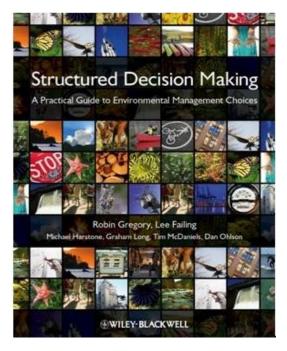
For more than a decade, BC Hydro has been developing a more structured approach to decision-making, which was recently formalized as Structured Decision-Making (SDM). The goal is to help staff and the organization overall make better choices by generating options based on multiple (and sometimes competing) objectives and by clarifying tradeoffs, while remaining focused on the triple bottom line.

TBL AT BC HYDRO

BC Hydro is the third largest electric utili 95% of the population of British Columb crown corporation, accountable to the B the Minister of Energy, Mines and Petroli

Makino decisions

for rea


Using models structured decision making &

adaptive management

Structured Decision Making

00:02 / 1:11:28 CC off

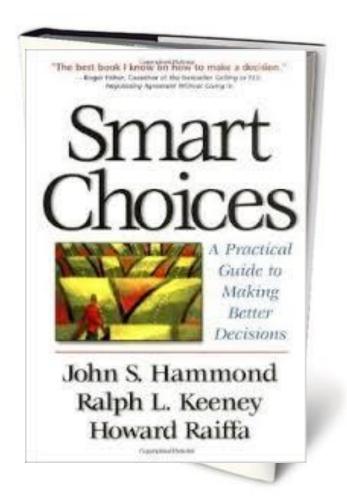
SDM

What is SDM?

An organized framework for helping people, especially **groups**, identify creative options and make informed, **defensible** and **transparent** choices

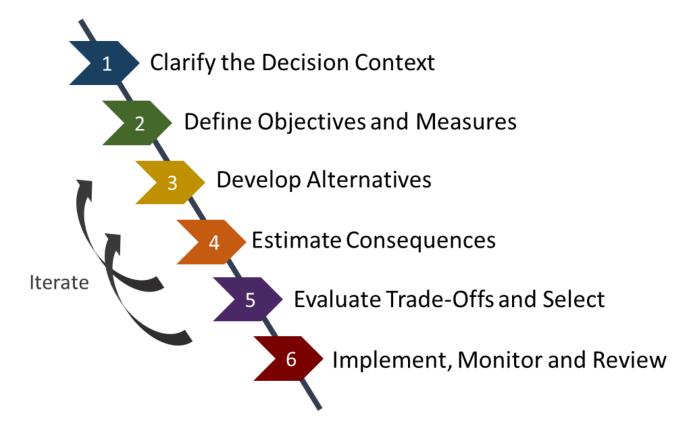
SDM is...

Based in the decision sciences

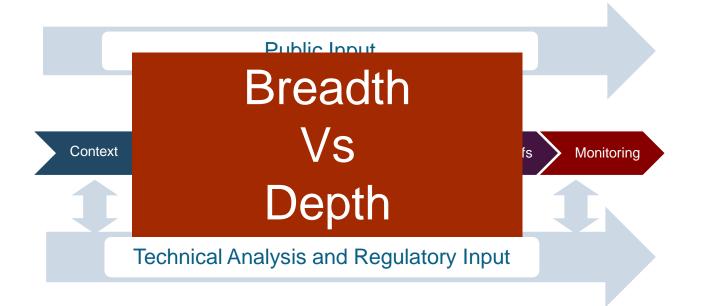

- A set of core steps
- A set of structuring tools

Adapted for the real world

- Practical, scalable and iterative
- Helps avoid "decision traps"


Recognized best practices

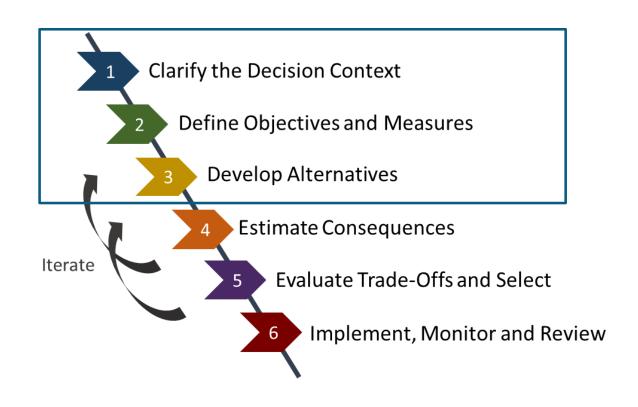
- Analysis and deliberation
- Facts and values


Steps of SDM

"Decision analysis is formal use of common sense for problems that are too complicated for informal use" *Ralph Keeney*

SDM integrates...

- Technical analysis with engagement process
- Small group engagement with broader public engagement



What Decision Analysis Can Do for You

SDM LESSONS

Sketch the Decision

- What decision is being made? By whom?
- What's in and out of scope?
- What kind of technical analysis is needed? What are the key gaps?
- What kind of engagement is needed?

Context

Objectives

Alternatives

Consequences

Trade-offs

From the sketch:

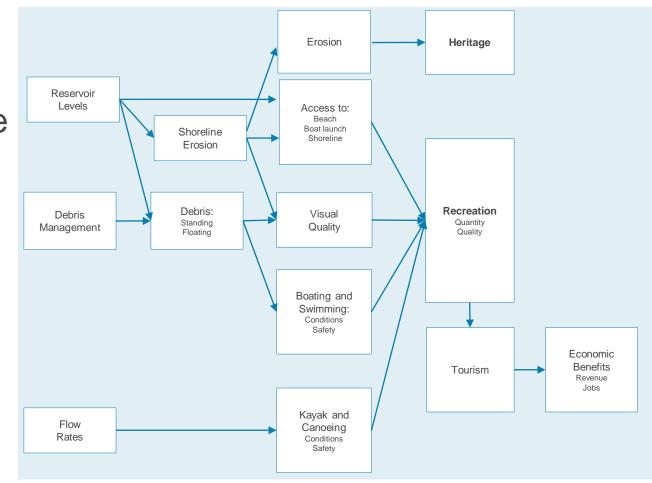
- A road map
- Integrated process
- Insight into likely tradeoffs and uncertainties

Terms of reference

	Habitat Protection	Predator Control	Road Closure
Caribou			
Wolves			
Recreation			
Local Business			
Cost to Govt			

Context

Objectives


Alternatives

> Consequences

Trade-offs

Define a concise set of Objectives

Objectives and performance measures define what matters in the decision and become the criteria for evaluating alternatives

Assess "what matters"

....not what you have data on

"spiritual quality"

Voice of the River Sound Smell Movement teraction o water

Context

Objectives

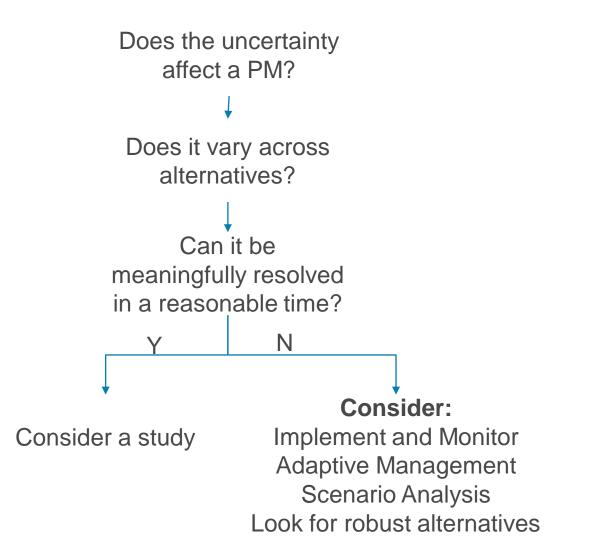
Alternatives

Consequences

Trade-offs

Assess "what matters"

Objective	Sub-objective	Measure (units)
Salmon	All species	Biomass (kg)
	Chinook	Biomass (kg)
Species at Risk	Harlequin ducks	Abundance (#)
Riparian Health	Adult cottonwood	Growth Mm /year
	Juvenile cottonwood	Growth Mm/year
River Health	Benthic community abundance	Millions of individuals
	Benthic community diversity	% EPT
Spiritual Quality	Voice of the river	Scale (1-5)
Finances	Power revenues	\$ million per year


Use Performance Measures to level the playing field...

- Across objectives
 - They operationalize hard-toquantify objectives
- Across alternatives
 - Every alternative is evaluated on the same basis
- Across participants
 - Synthesize technical concerns for non-technical participants

Consequences

Use Performance Measures to identify and prioritize studies...

Alternatives

What's the right number of alternatives?

Context

Objectives

Alternatives

Consequences

Trade-offs

Generate a Range of Alternatives

- Develop a range of real, distinct and creative alternatives
- Iterate
- Don't panic!

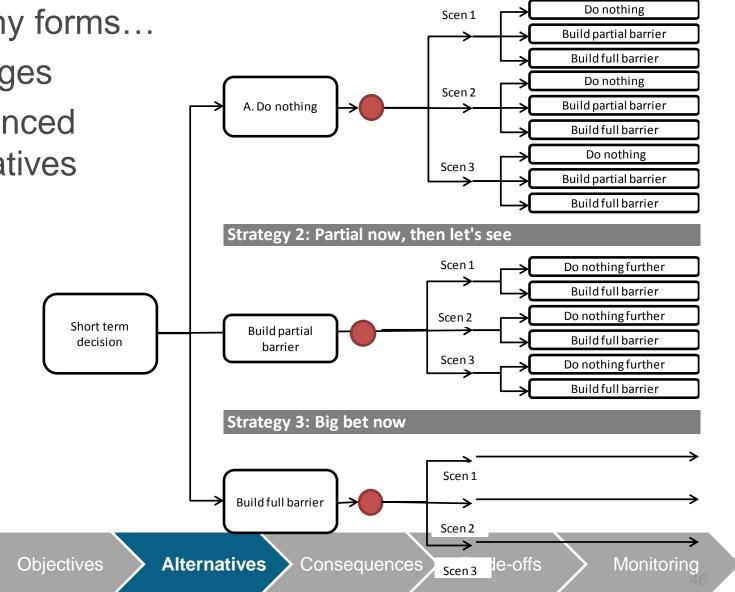
People won't make tough trade-offs unless they're sure they have to... and that only happens if they believe the best alternatives are on the table

Context

Objectives

Alternatives

Consequences


Trade-offs

Alternatives can take many forms...

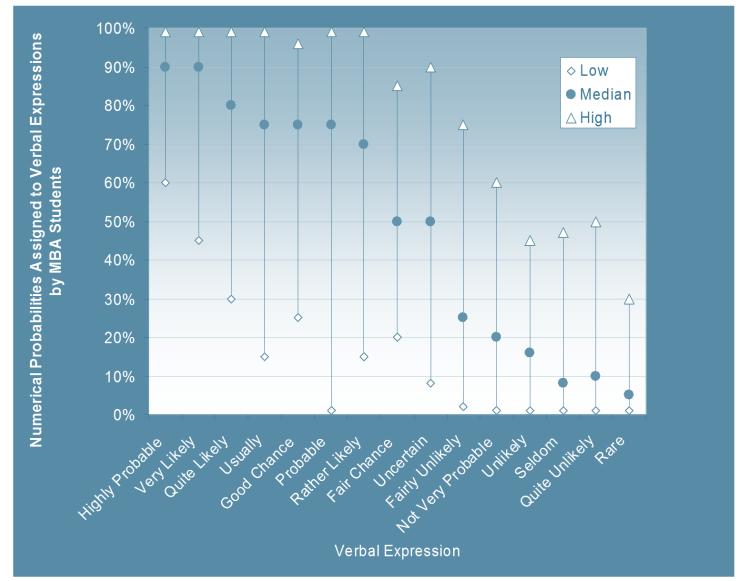
- Packages
- Sequenced alternatives

Context

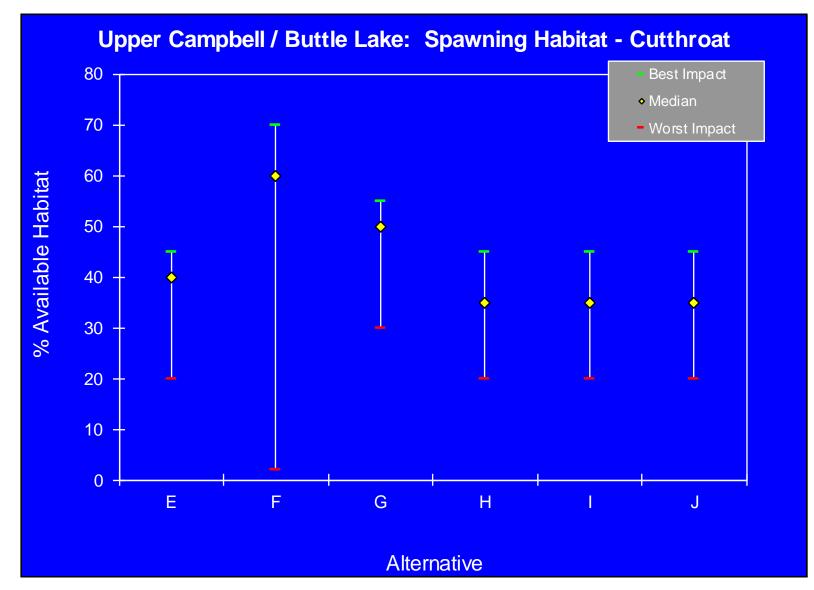
Strategy 1: Do nothing now, maybe something later

Make a Consequence Table

- Focus studies on populating the table
- Do analysis that is "good enough" to inform the decision
- Use models and expert judgment
- Iterate


		Alternatives					
Objective	Attribute	E	F	G	н	I	
Upper Campbell							
Erosion	risk days per year	37	13	4	3	3	
Recreation	rec days per year	43	40	106	158	158	
Fish - Cutthroat	% Available Habitat	40	60	50	35	35	
Lower Campbell							
Erosion	risk days per year	3	27	13	0	0	
Recreation	rec days per year	115	43	83	167	170	
Fish - Cutthroat	% Available Habitat	78	18	95	79	79	
Fish - Rainbow	% Available Habitat	26	3	49	49	47	
Campbell River							
Flooding	flood days per year	34	48	24	59	59	
Recreation	rec days per year	66	83	51	81	79	
Fish - Spill Risk	spill days per year	118	214	102	176	177	
Fish - Spawning	% success	55	89	78	59	59	
Fish - Rearing	risk indax	0.53	0.48	0.53	0.50	0.49	
Salmon River							
Canoe Route	canoe days	162	167	153	204	183	
Fish and Wildlife Habitat	habitat risk index	0.54	0.47	0.44	0.48	0.53	
System-Wide							
Power	Annual Revenue M\$/Year	68.5	64.6	68.6	65.1	65.3	

Get good at expert judgment


There are best practices... use them!

Use multiple experts Separate facts and values Avoid common biases Avoid ambiguity Use an appropriate elicitation protocol Compare across experts Create a traceable account (peer reviewable!)

Be explicit about uncertainty

Address Risk Tolerance

Put the most relevant info in the CT

- Important but routine/repeated decisions
 - Expected value may be most relevant?
- Low probability high consequence events matter
 - Report both expected and extreme events?
- Low probability high consequence events can be ignored
 - 90% confidence interval?

You can't put all the uncertainty ranges in for all the performance measures

Focus on Trade-offs

(That's another talk!)

Alternatives

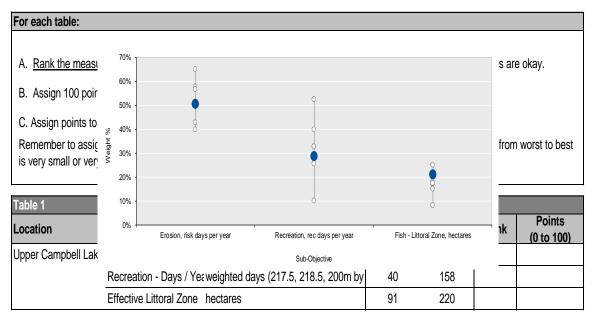
es 💙 Consequences 🎽

Trade-offs

Focus on Trade-offs

Simplify by eliminating dominated alternatives

		Alternatives					
Objective	Attribute	E	F	G	Н	I	
Upper Campbell							
Erosion	risk days per year	37	13	4	3	3	
Recreation	rec days per year	43	40	106	158	158	
Fish - Cutthroat	% Available Habitat	40	60	50	35	35	
Lower Campbell							
Erosion	risk days per year	3	27	13	0	0	
Recreation	rec days per year	115	43	83	167	170	
Fish - Cutthroat	% Available Habitat	78	18	95	79	79	
Fish - Rainbow	% Available Habitat	26	3	49	49	47	
Campbell River				_			
Flooding	flood days per year	34	48	24	59	59	
Recreation	rec days per year	66	83	51	81	79	
Fish - Spill Risk	spill days per year	118	214	102	176	177	
Fish - Spawning	% success	55	89	78	59	59	
Fish - Rearing	risk indax	0.53	0.48	0.53	0.50	0.49	
Salmon River							
Canoe Route	canoe days	162	167	153	204	183	
Fish and Wildlife Habitat	habitat risk index	0.54	0.47	0.44	0.48	0.53	
System-Wide							
Power	Annual Revenue M\$/Year	68.5	64.6	68.6	65.1	65.3	


Context

Alternatives

Focus on Trade-offs

- But suppose there are irreducible and complicated trade-offs?
- Use structured methods to facilitate useful dialogue and summarize differing views

INSTRUCTIONS

Table 3								
Location	Performance Units Measure	Worst Case	Best Case	Rank	Points (from 0 to			
Campbell River	Flooding - Total Days weighted days (300, 453,	530 cms) 59	24					
	Recreation - Days / Yeaweighted days (28 cms -	80 cms) 51	83					
	Spawning Habitat - All \$% successful redds (Chu	m as indicato 55	89					
	Rearing Habitat - All Sp "Average" risk index (sca	e 0 - 1) 0.53	0.48					

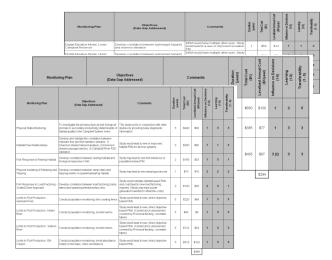
Context

Alternatives

Monitoring and Adaptive Management

Final Operating Alternatives

Monitoring Programs


					Alternatives			
Location	Performance Measures (1)	Units		Significant Difference	REF	R15 Heber	S15 Heber	
Upper Can	npbell / Buttle Lake							1
	Erosion - Days / Year	weighted days	less	10%	16	- 4	4	Relative to R
	Recreation - Days / Year	weighted days	more	10%	50	82	85	Better
	Effective Littoral Zone	hectares	more	10%	80	94	82	Neutral
	Spawning Habitat - Cutthroat	% Available Habitat	more	10%	6	10	10	Worse
	Spawning Habitat - Rainbow	% Available Habitat	more	10%	3	5	5	
Lower Car	mpbell / McIvor / Fry							1
	Erosion - Days / Year	weighted days (2)	less	10%	11	11	10	1
	Recreation - Days / Year	weighted days (2)	more	10%	102	95	98	
	Elevation Variability	Coefficient of Variation	less	10%	0.08	0.16	0.09	
	Effective Littoral Zone	hectares	more	10%	86	82	83	
	Spawning Habitat - Cuthroat	% Available Habitat	more	10%	4	3	2	
	Spawning Habitat - Rainbow	% Available Habitat	more	10%	25	31	15 (22)	
Campbell	River							1
	Flooding - Total Days	weighted days	less	10%	27	18	20	1
	Recreation - Days / Year	weighted days	more	10%	79	60	60	
	Total Spil Days - Al Species	totel days	less	10%	160	111	114	
	Spawning Habitat - All Species	% successful redds (Chum)	more	10%	69	71	69	
	Rearing Habitat - All Species	"Average" risk index (0 - 1)	less	10%	0.54	0.59	0.58	
	Elk Canyon	FTC judgement	more	0%	0	++++	++++	
Salmon Ri	ver							1
	Canoe Route Safety	Flow Rating	more		0	0	0	
	All Habitat - All Species	"Average" risk index (0 - 1)	less	10%	0.54	0.46	0.46	
	Fish Screen Performance	Fishing Efficiency, Fish Condition	more		0	0	0	
System-Wi	Ide							1
	Power / Financial	Annual Revenue M\$/Year	more	156	66.9	68.2	68.3	1
		Cost: Salmon Fish Screen (M \$ / Year)	less	1%	0	0	0	
		Cost: All Other Physical Works (M \$ / Year)	less	1%	-0.10	-0.10	-0.10	
		Cost: Monitoring (M \$ / Year)	less	1%	-0.70	-0.70	-0.70	
	GHG	Equivalent Monnes CO2/Year	less	1%	-600	-614	-616	
	Diversions	Status of Heber Diversion (3)			Status Quo	Heber decision	Heber decision	1

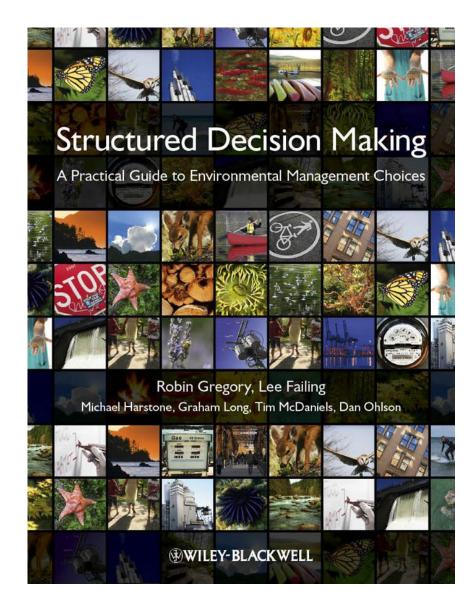
Sustments were made to account for these PM's sensibility to the 177.4 vs. 177.5 summertime maximum target has previously been decided to continue operation of the Salmon and Quinsam diversions.

Objectives

Alternatives

Context

Consequences > Trade-offs


Key Messages

- Sketch the decision before you start it will change the focus of analysis
- Level the playing field using performance measures let's nontechnical people participate on equal footing
- Generate alternatives solutions are only as good as the alternatives explored, and science has a role to play
- Focus your analysis on the evaluation of alternatives
- Compare the risk profiles of alternatives let decision makers express their risk tolerane
- All choices involve tough trade-offs; there are ways to help groups address them productively
- Agreement in the presence of uncertainty is likely to require a firm commitment to monitoring and adaptive management

Lee Failing, P. Eng. MRM www.compassrm.com www.StructuredDecisionMaking.com

THANKS!

