Evaluating habitat suitability predictions: Using contemporary sightings and prey data to assess model assumptions

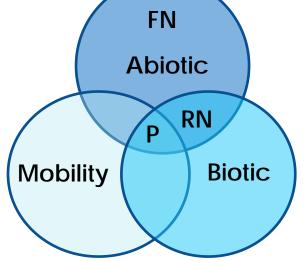
Rowenna Gryba Stantec Consulting Ltd. Edward Gregr SciTech Consulting Ltd.

Funding: NPRB Photo: John Ford

Outline

Evaluation of right whale habitat suitability using independent data

- Model assumptions
- Evaluation methods and data
- Results

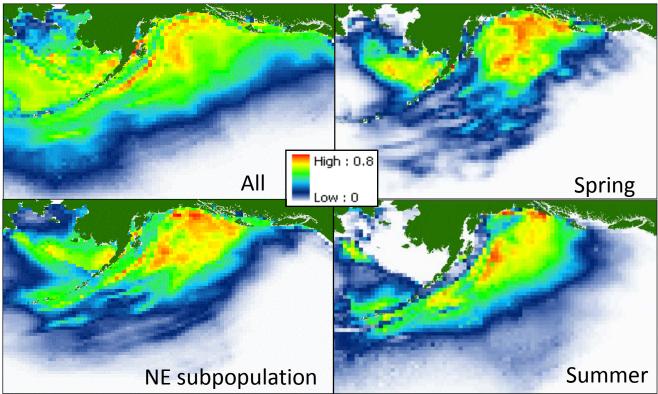

Model Assumptions

What are we predicting?

- Does habitat suitability = species occurrence?
- Does habitat suitability = foraging areas?

Model Assumptions

Niche concepts (Soberon & Peterson 2005)

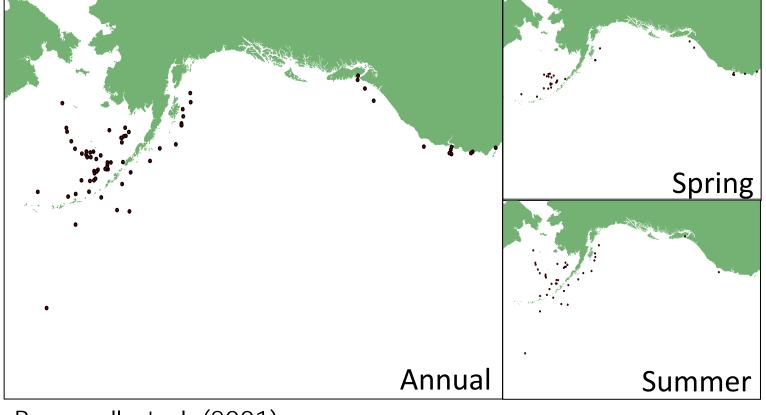


Fundamental Niche (FN) = Abitioc Realized Niche (RN) = Abiotic \cap Biotic Distribution(P) = Abiotic \cap Biotic \cap Mobility

Right Whale habitat suitability

Annual

Seasonal (NE subpopulation)

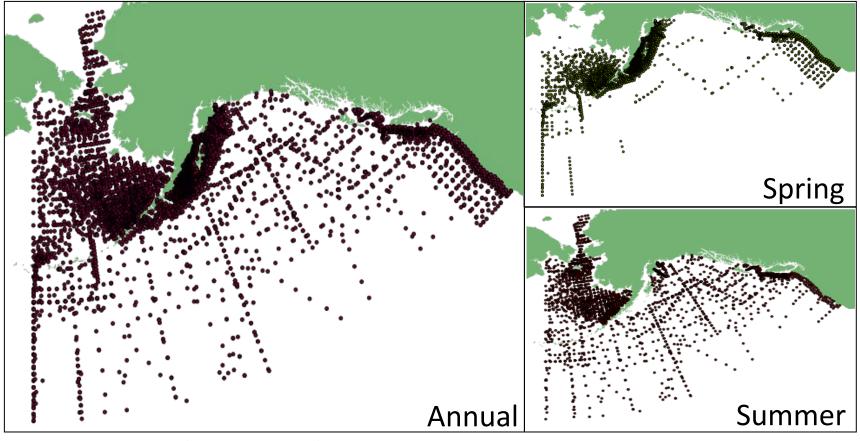


Habitat predictions for North Pacific right whales in the North Pacific based on historic accounts and physical oceanography. (Gregr 2011, Endangered Species Research).

- 1. Operational validation
- Does the model mimic the system?

Does habitat suitability = occurrence? Fundamental Niche?

Contemporary Sightings


Brownell et al. (2001)

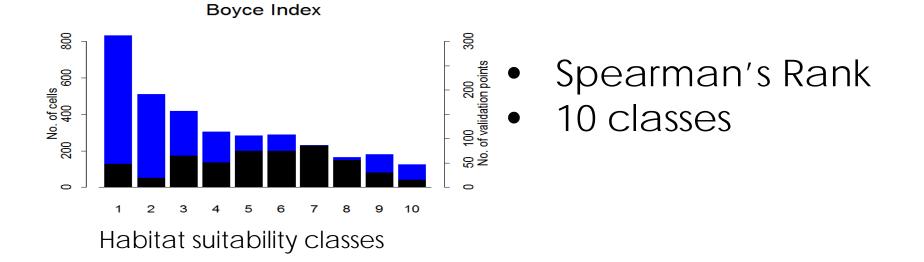
2. Conceptual validation

• Are the model hypotheses correct?

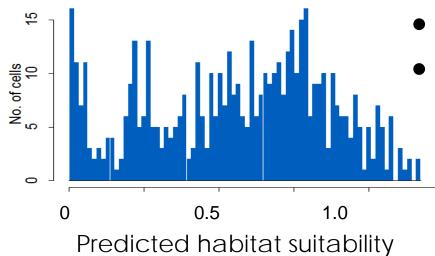
Does habitat suitability = foraging areas? Realized Niche?

Prey data

DFO & NMFS (1951-2000)


Evaluation Methods

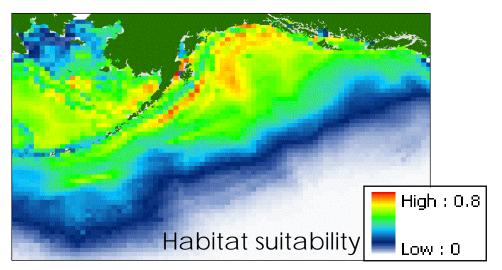
1. Boyce Index (Hirzel et al. 2006)


2. Adjusted Skewness (Gregr & Trites 2008)

- Both methods:
 - Presence only
 - -Incorporate range of habitat suitability
 - Associate presence data habitat suitability classes

Boyce Index

Adjusted Skewness



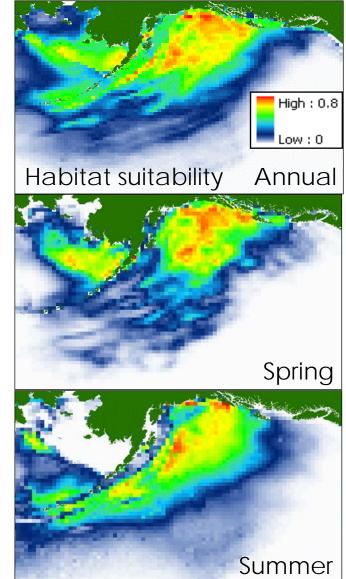
Adjusted skewness

Measure of asymmetry100 classes

Results: North Pacific Scale

Spatial Extents	5	Boyce Index North Pacific		kewness acific
Evaluation Data Set	Sightings	Prey	Sightings	Prey
Model:				
All Annual	0.816	0.915	-0.630	-0.527
	(n=51)	(n=517)		

Results: North Pacific Scale


Realized niche ≈ Fundamental niche

Habitat suitability predictions are likely estimating potential distribution

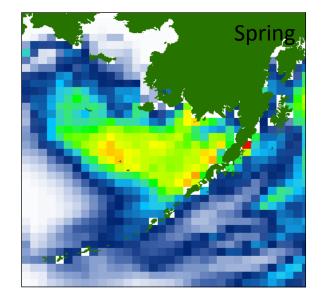
Results: Sub-population scale

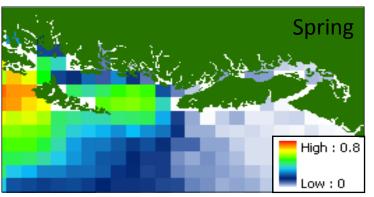
NE Sub-population

			1		
	Boyce	Boyce Index		Adjusted Skewness	
Spatial Extents	North Pacific		North Pacific		
Evaluation Data	Prey	Sightings	Prey		
	Signings	псу	Signings	псу	
Set					
Model:					
NE					
Subpopulation					
Annual	0.239	0.442	-0.066	-0.128	
	(n=51)	(n=517)			
Spring	-0.356	-0.721	0.397	0.477	
	(n=19)	(n=310)			
Summer	0.103	0.709	0.123	-0.094	
	(n=34)	(n=400)			

Results at Sub-population scale

Annual model validation


- Basin wide dispersion largest influence
- Sub-population inter-specific interactions
- Prey data is a better evaluator at this scale \longrightarrow Conceptual Validation


Seasonal model validation

• Spatial bias in validation data

Results: Regional Scale

	Boyce Index		Adjusted Skewness	
Spatial Extents	Regional		Regional	
	Berring	BC	Berring	BC
Evaluation Data Set	Prey	Prey	Prey	Prey
Model: All Annual	0.377	0.568	-0.267	-0.550
NE Subpopulation Annual	-0.304	0.411	-0.03	-0.256
Spring	-0.620	0.128	0.448	0.976
Summer	0.624	0.204	-0.231	-0.446

Results at regional scales

Bering Sea annual model is missing something at the conceptual level?

Seasonal prey data allows for further investigation into model performance.

 Apparent when looking between spring and summer predictions

Conclusions

- Different types of validation data can expand on our knowledge on operational and conceptual levels.
- Validation at different scales can give more informative results
- Seasonal prey data provides further insight

Thank you!

Photo: John Ford