## Diet Composition and Isotopic Signatures of Sentinel Species as Indicators of Climate Change

#### Robert Suryan Amanda Gladics



#### Julia Parrish W UNIVERSITY of WASHINGTON

#### Elizabeth Daly Bill Peterson







Introduction

Objectives

Methods

Results

#### Bottom-up Effects ("Ecological Equivalents")



Introduction

**Objectives** 

Methods

Results

## **Top-Down Effects**



Introduction

Objectives

Methods

Results

## Common Murre (Uria aalge)

Methods

- Chiefly piscivorous
- Dive up to 150 m

Introduction

Produce < 1 chick per year</p>



**Objectives** 



Results

## **Objectives**

Determine whether variation in diets and isotopic signatures reflect local- or basin-scale physical variability.

Decipher mechanisms by which physical forcing and biological production affects upper trophic level consumers





Introduction

Objectives

**Methods** 

Results

# Murre Diets: digital photographs 2007-2011



Introduction O

#### Objectives

#### Methods

Results

## Murre diets: digital photographs



Introduction

Objectives

#### Methods

**Results** 

## **Murre Chick Diets**



**Methods** 

**Results** 

**Conclusions** 

Gladics et al. 2013, In Review J. Mar. Sys.

**Objectives** 

# Murre Diets: stable isotope analysis 2004-2011



Methods

Introduction

**Objectives** 

#### Conclusions

**Results** 

#### **Murre Isotopes**



## **Local-Scale Drivers**

- 1. Wind Stress
- 2. Upwelling Index
- 3. Water Temperature (upper water column)
- 4. Zooplankton Species Comp/Biomass (CCI & NCI)

**Methods** 

5. Ichthyoplankton Species Comp/Biomass (WIC & WIB)

Conclusions

**Results** 

6. Spring Transition

**Objectives** 

#### **Prey & Local-Scale Drivers**



Methods

Results

**Conclusions** 

Gladics et al. 2013, In Review J. Mar. Sys.

**Objectives** 

#### Upwelling Index (45° N) 2004 - 2011



#### Introduction

Objectives

#### **Methods**

Results

#### **Isotopes vs. Upwelling Index**





Introduction

**Objectives** 

Methods

Results

## **Does Upwelling Affect Length of Food Chain?**



#### Introduction

Objectives

#### Methods

Results



Month 4-6, r = 0.71, p = 0.047

Month 3-5, r = 0.45, p = 0.308



## **Basin-Scale Drivers**

- 1. Pacific Decadal Oscillation
- 2. Multivariate ENSO Index

Introduction

**Objectives** 

- 3. Northern Oscillation Index
- 4. North Pacific Gyre Oscillation

Methods

**Results** 

### **Prey & Basin-Scale Drivers**



Methods

Results

**Conclusions** 

**Objectives** 

Gladics et al. 2013, In Review J. Mar. Sys.



**Methods** 

Month 1-5, r = - 0.89, p = 0.0035

**Objectives** 

Introduction

Month 1-5, r = 0.1, p = 0.8083



Results



Month 5-7, r = 0.93, p < 0.001

Month 3-5, r = 0.51, p = 0.24



#### Isotopes vs. NOI



Month 5-7, r = -0.67, p = 0.0674Month 1-2, r = -0.65, p = 0.082 Average NOI Index January - February Average NOI Index March - May 2007 2011 S 2008 \_ 2006 2009 . 2008 2007 0 2009 2004 2004 2011 2010 • 2005 ŝ 2006 2005 • 2010  $\begin{array}{ccc} 15.5 & 16.5 \\ \text{Murre} \ \delta^{15} \text{N} \ (\text{$\%$)} \end{array}$ 14.5 -16.5 -15.5 Murre δ<sup>13</sup>C (‰) 17.5 -17.5 -14.5

**Methods** 

Results

**Conclusions** 

**Objectives** 

## Conclusions

Murre diets reflected changes in local- and basin-scale biophysical drivers

> Murre  $\delta^{15}N$  may reflect upwelling driven changes in energy pathways in coastal food webs

> Murre  $\delta^{13}$ C appears to most strongly reflect variability in source water transport

Introduction

**Objectives** 

Methods

Results

### Conclusions

Signals reflecting physical forcing and biological production regimes that propagate through the food web are measurable within a major, upper trophic level consumer on the Central Oregon Coast

Introduction

Objectives

Methods

Results

## Thanks.

Joe Ashor (BLM) Timothy Fisher (BLM) Dawn Harris (FWS) Roy Lowe (FWS) Shawn Stephensen (FWS)

Yaquina Head Field Crews!

Funding:

**Bureau of Land Management** U.S. Fish and Wildlife Service National Science Foundation