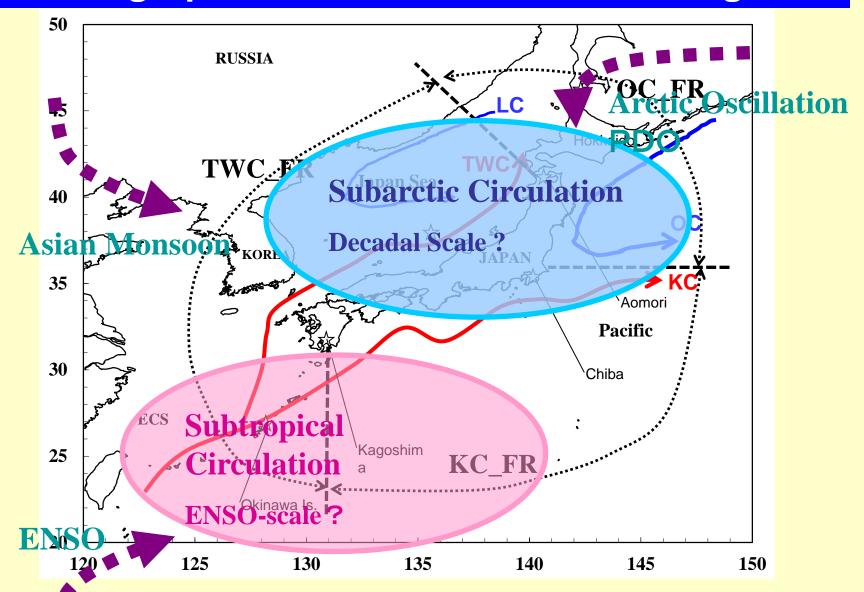
2014 PICES FUTURE OPEN SCIENCE METTING (S4)

Apr. 16, 2014, Kohala Coast, Big Island, HI, USA

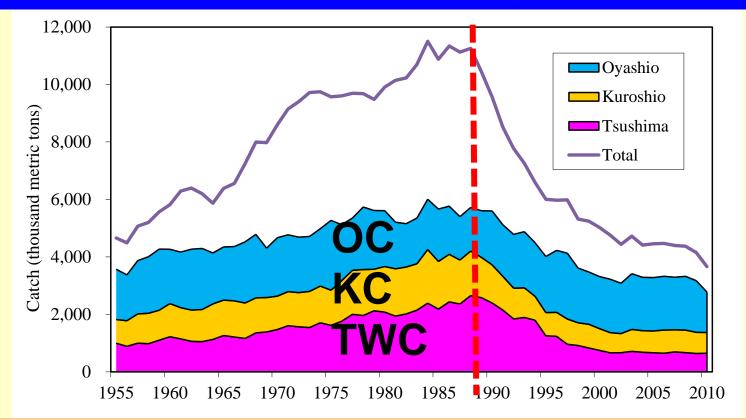
Regime shifts in the fish assemblages around Japan over the last century and their early warning signals

Yongjun <u>Tian</u>¹, Xuhui Xie², Kazuhisa Uchikawa¹, Jürgen Alheit³, Jiahua Cheng⁴ and Akira Tomosada^{2,5}

- ¹ Japan Sea National Fisheries Research Institute, Fisheries Research Agency (FRA), Niigata, Japan.
- ² Japan Fisheries Information Service Center, Tokyo, Japan
- ³ Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
- ⁴ East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- ⁵ Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, Japan


Outline

What we had known


Features of the late 1980s regime shift around Japan from our previous studies

- Regime shifts occurred before 1950
 PCA results for 1900-2010, particularly focused on the regime shifts before 1950s.
 Outlooks on early warning signals for future regime shift.
- Summary (and discussion)

Oceanographic structure and fisheries region

Catch trend by fisheries region: 1955-2010

These 25 indicator species from the three regions accounted for about 75%(56-93%) of total Japanese catch, and the trends are generally same to total.

Tian et al. (2014) ICES JMS

Variation patterns from PCA (PC1-PC4)

These results indicate that the most marked change across the three ecosystems around Japan occurred in the late 1980s, but only OC responded strongly to the mid-1970s regime shift in comparison with other two ecosystems

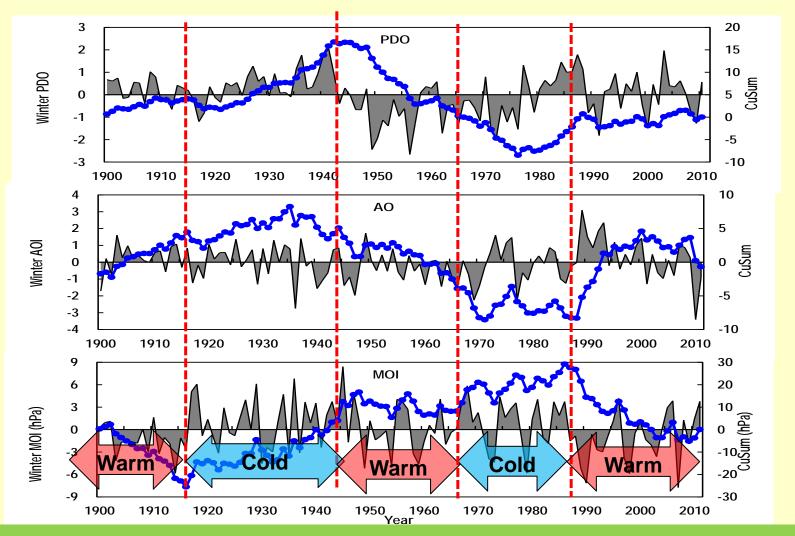
The late 1980s regime shift was the most evident change in Japanese water, seemed different with the mid-1970s regime shift in the NE North Pacific.

The late 1980 regime shift was also identified in the East China Sea, and in North Atlantic.

Question: What happened in the fish assemblages around Japan particularly before 1950?

cold <u>1980s</u> regime shift warm 1990s

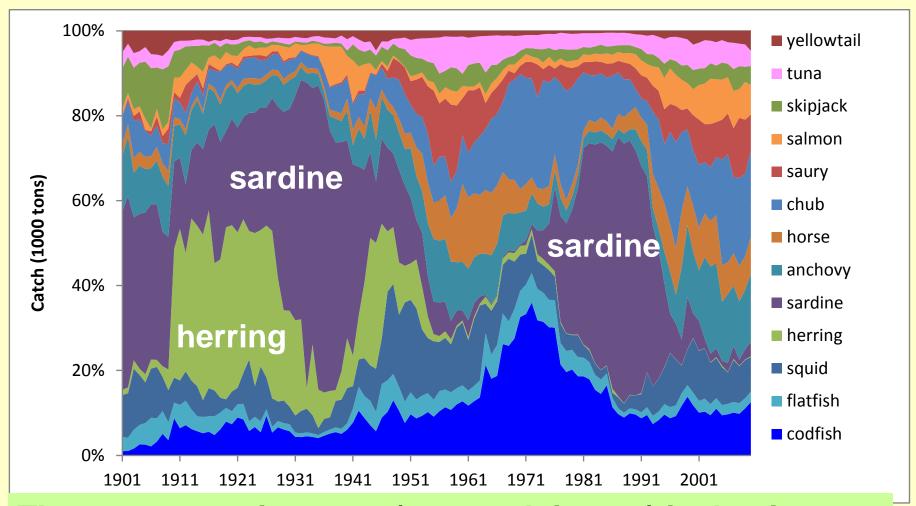
Objective


- To identify the long-term variability in the fish assemblages around Japan over last century, <u>particularly</u> focused on regime shifts occurred before 1950s.
- To discuss the possibility in <u>using</u> ecological indicators to detect the early warning signal of regime shift.

Trend in SST around Japan since 1900

SSTs showed cold period during 1920s to 1930s and warm period during 1950s to early-1960s.

Trend in Climate Index: 1900-2010

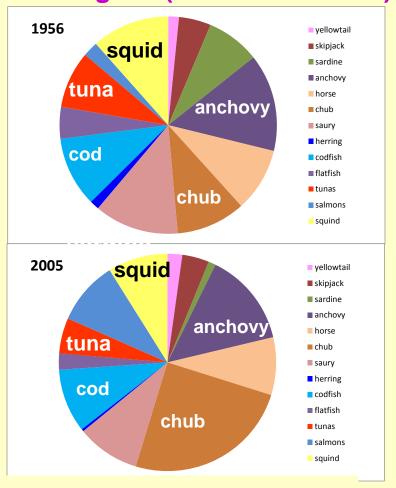

Cold (warm) periods corresponded well to the intensify (weakening) in AO and MOI.

Selection of Indicator Species

13 (not 25) commercially important specie from small pelagic to large predatory fishes with different trophic level and habitat are selected to representing the structure of fish assemblage.

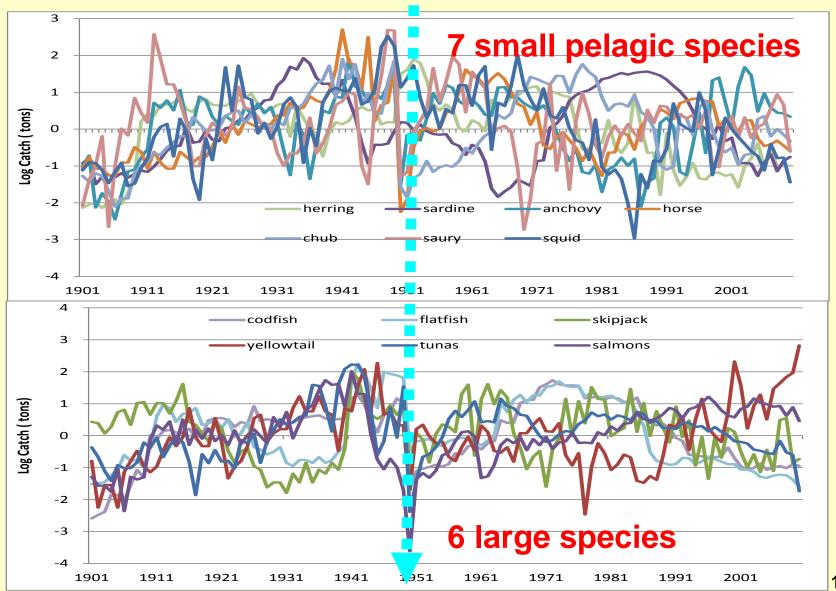
Groups	Common Name	Scientific name	Age	Habitat	TL
			(age comp.)	(Current)	
			Spawning Season		
4 Large predatory Species	Yellowtail	Seriola spp.	7 (0-3) L∞ (cm):98 FebJune	Pelagic Migratory (Warm-water)	4.1
(4 taxa)	Skipjack tuna And Frigate mackerel	Katsuwonus pelamis Auxis spp.	8(1-4?) L∞ (cm) :140 Nov-May	Pelagic Migratory (Warm-water)	3.8
	Tunas (Bluefin tuna)	Thunnus spp.	10(0-3?) <mark>300cm?</mark> June July	Pelagic Migratory (Warm-water)	3.9
	Salmonidae (chum salmon)		7(3-5) 100cm? Dec-Mar	Pelagic (Cold-water)	3.5
7 Small Pelagic Species (7 taxa)	Japanese sardine	Sardinops melanostictus	7(0-3) 25 Dec-May?	Pelagic Migratory	3.0
	Japanese anchovy	Engraulis japonicus	2(0-1) 15cm All seasons	Pelagic Costal (Warm-Water)	2.8
	Pacific herring	Clupea pallasii	18 (0-6) 40cm Mar-May	Pelagic (Cold-water)	3.6
	Horse mackerel	Carangidae (Trachurus japonicus)	3(0-2) 35cm Feb-May	Pelagic Migratory (Warm-water)	3.2
	Chub mackerel	Scombrini (Scomber japonicus)	4(0-3) 43cm Apr-June	Pelagic Migratory (Warm-water)	3.4
	Pacific saury	Cololabis saira	2(0-1) 30cm NovJune	Pelagic Migratory (Warm-water)	3.3
	Flying squid	Todarodes pacifcus	1(0-1) 25cm(mantle len.) OctMar	Pelagic Migratory (Warm-water)	3.0
Demersal Species (2 taxa)	Codfishes (Walleye Pollock abd Pacific cod)	Theragra chalcogramma Gadus macrocephalus	12(3-5?) 120cm Dec-Mar.	Demersal (Cold-water)	3.5
	Flatfishes (Bastard halibut)	Pleuronectidae (Paralichthys olivaceus)		Demersal and Costal (Warm-water)	3.6

Catch Trend from Japanese Water: 1901-2010

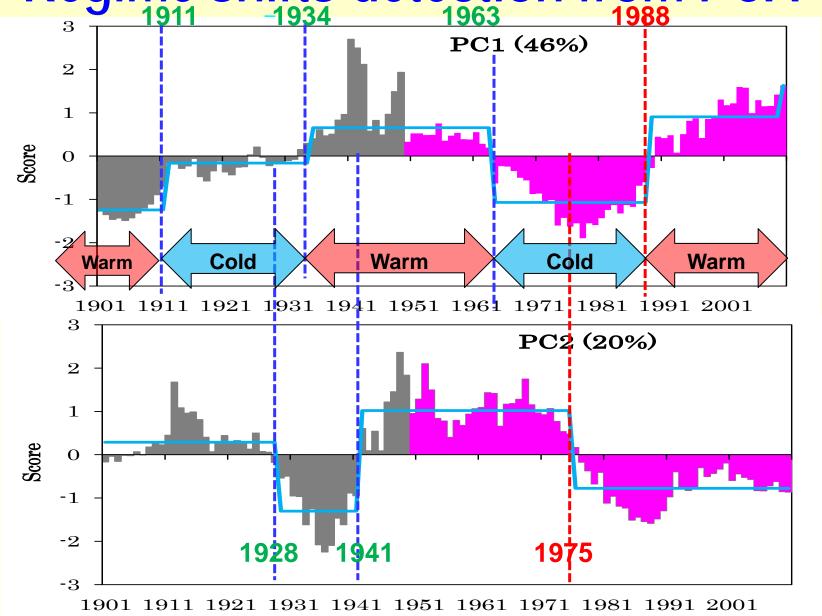

The small pelagic group (zooplanktivores) is dominant (wasp-waist) with large inter-annual variations.

Catch compositions in different regimes

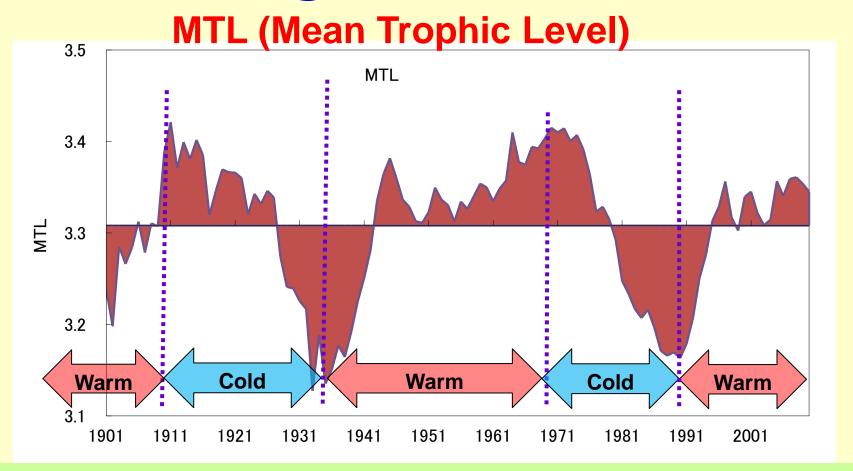
Cold regime (1930s and 1980s)



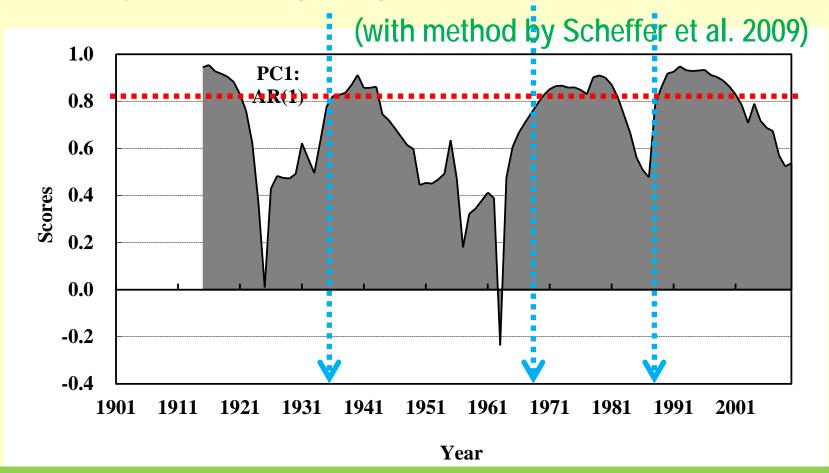
Warm regime (1950s and 2000s)



1930s was characterized with extremely abundant sardine and herring.


Standardization of catch data for PCA

Regime shifts detection from PCA



Ecological Indicators

The MTL decreased (increased) during cold- (warm-) regime, reflecting the changes in small pelagic species, indicating climate-forcing (regime shift) rather than fishing

Early Waning Signal from PCA (PC1)

Coefficient of AR(lag1) abruptly increased around early 1930s, early 1960s and late 1980s, demonstrating the usefulness as indicator of regime shift prediction.

Conclusions

- Five regime shifts in the fish assemblage around Japan were detected over last century: 1911, 1934, 1963, 1975 and 1988.
- The regime shifts were well coincided with SST and climate index. Regime in 1920s-1930s was cold-period with abundant sardine.
- MTL decreased during cold regime reflecting the increase in small pelagic species, not from fishing down food web effect.
- Ecological indicators such as PC1 is useful as early warning signal for forecasting the future (current) regime shift.