Multiple realizations of future biophysical states in the Bering Sea

Albert J. Hermann, Georgina A. Gibson, Nicholas A. Bond, Enrique N. Curchitser, Kate Hedstrom, Wei Cheng, Muyin Wang and Phyllis J. Stabeno

University of Washington JISAO NOAA Pacific Marine Environmental Laboratory Rutgers University University of Alaska Fairbanks Arctic Region Supercomputing Center

Our method thus far

- Apply a subset of AR4-IPCC models as *physical* forcing to a regional model
- NPZ dynamics embedded in the regional model use climatological IC/BC

regional coupled models

Climate models

FOOD WEB (FEAST)

GOAL: mutidecadal projections of physics and biology in the **Bering Sea**

of runs

provide BCs/ICs to

Four model runs used here

Hindcast
CORE (1970-2004)
IPCC forecast
MIROC (2003-2040)
CCCMA (2003-2040)
ECHO-G (2004-2040)

Model Forcing Variables

- Wind Velocities
- Air Temperature
- Air Specific Humidity
- Sea Level Pressure
- Rainfall
- Runoff
- Downwelling Shortwave
- Downwelling Longwave

Bering10K model

- Descendent of NEP5 (Danielson et al. 2012)
- 10 layers, 10-km grid Includes ice and tides
- CCSM bulk flux
 - Details in Hermann et al. (DSR2, 2013)

What is unique about the Bering Sea?

- Physical

- Seasonal ice with advection to the south
- Tidal mixing sets up distinct biophysical regimes
- Biological
 - Ice plankton may be a major food source to higher trophic levels
 - Benthic food chain is a major player

Modeled vs observed temperatures at M2

depth-average temperature 2010 (0-40m)

DATA

MODEL

Bottom temperature 2009

DATA

MODEL

Resolution of AR4-IPCC model output (single A1B scenario realizations)

MODEL	CGCM3.1	MIROC	ECHOG
OCEAN	1.85-degree lat 1.85-degree lon monthly	~1.0-degree lat ~0.5-degree lon monthly	~2.8 lat* ~2.8 lon monthly *finer near equator
ATMOSPHERE	3.75-degree lat 3.75-degree lon daily	~2.5-degree lat ~1-degree lon daily	~3.7-degree lat ~3.75-degree lon daily

Bering10K resolves more detail!

MIROC

Bering10K

Projected EBS ice cover and vertical average temperature

0

Standard BEST/BSIERP bioregions of the Bering Sea (Ortiz, 2012)

Middle shelf 0-100m temperature

SST (deg C) CGCM3 MIROC

66.0°N

64.0°N

62.0°N

60.0°N

58.0°N

56.0°N

54.0°N

52.0°N

8.5

7.5

65

3.5 3 2.5 2

1.5

0.5

R

ECHOG

"Present" (2003-2012) 66.0°

64.0°N

62.0°N

60.0°N

58.0°N

56.0°N

54.0°N

52.0°N

180° 176°W172°W168°W16 '°W160°W156°W152°W

Ice coverage (fraction) CGCM3 MIROC **ECHOG**

0.025

0.05

0.075

-0.125

-0.15

-0.175

-0.225

0.25

-0.2

-0.1

(2031 - 2040)w.r.t. present

Northward wind stress (N m⁻²)CGCM3MIROCECHOG

0.03

0.02

0.01

0.005

-0.005

-0.01

-0.02

-0.025

0.035

-0.04

-0.045

-0.05

-0.03

-0.015

0.015

0.025

(2031-2040) *w.r.t.* present

Large Crustacean Zooplankton (mgC m⁻³) CGCM3 MIROC ECHOG

"Future" (2031-2040) *w.r.t.* present

Projected EBS July bottom temperatures

Coherence analysis

- large-scale forcing vs. regional response
- physical vs. biological variables
- separately analyze 4 model runs
 - IPCC forecast
 - MIROC (2003-2040)
 - CCCMA (2003-2040)
 - ECHO-G (2004-2040)
 - Hindcast
 - CORE (1970-2004)

Model Forcing Variables

- Wind Velocities
- Air Temperature
- Air Specific Humidity
- Sea Level Pressure
- Rainfall
- Runoff
- Downwelling Shortwave
- Downwelling Longwave

CORE forcing: Mid-shelf Tocn is coherent with Tair on annual to decadal scales

TIME SERIES

SPECTRA

COHERENCE

• red, green, blue lines indicate 90%,95%,99% confidence levels for significantly different than zero coherence

• positive phase means top variable leads bottom variable

CORE forcing: Mid-shelf Tocn is coherent with alongshelf windstress on annual to interdecadal timescales

TIME SERIES

SPECTRA

COHERENCE

CORE forcing: Outer-shelf euphausiids are *negatively* coherent with Tocn at annual and decadal scales

TIME SERIES

SPECTRA

COHERENCE

Note how euphausiids have whiter spectrum than physical ocean variables

CORE forcing: Mid-shelf Tocn is NOT coherent with swrad

SPECTRA

TIME SERIES

30.

20.

10.

0 -10.

-20. -30

1985

1990

1.00 600. 0.80 0.60 0.40 X04S 400. 200. 0.20 0. 0.00 0.00 0.50 1.00 1.50 2.00 0.00 0.50 1.00 1.50 2.00 1995 2000 1/YRS 1/YRS swrad anomalies bioregion 3 swrad bioregion 3 spectra coherence DATA SET: coher-core X : 0.5 to 40.5 DATA SET: coher-core X : 0.5 to 40.5 100. 3.0 PHASE 2.0 SPCY 1.0 -100. 0.0 0.00 0.50 1.00 1.50 2.00 0.00 0.50 1.00 1.50 2.00 2000 1/YRS 1/YRS temp 100m bioregion 3 spectra

phase lag

1.6 1.2 0.8 0.4 0.0 -0.4 -0.8 -1.2 -1.61985 1990 1995 temp_100m anomalies bioregion 3

COHERENCE

Summer Cloudiness (from Bond 2012)

Year	Cloud Fraction		
	Western Bering	Eastern Bering	
2003	0.81	0.86	
2004	0.85	0.86	
2005	0.80	0.88	
2006	0.73	0.86	
2007	0.87	0.88	
2008	0.76	0.85	

Conclusions

- Bering Sea has unique features which benefit from both spatial and trophic downscaling:
 - Ice advection and ice plankton
 - Tidal mixing
- Forecasts suggest *continued interannual variability* on top of a warming trend
 - reduced ice in south, not much change in north
 - increased northward winds
- Coherence analysis suggest the following relationships:
 - T_ocean coherent with T_air
 - T_ocean coherent with alongshelf wind-stress
 - T_ocean coherent with euphausiid bionass.
 - out-of-phase on longer time scales
 - in-phase on short time scales
 - T_ocean NOT coherent with shortwave input