

Climate change projection for the western North Pacific: Dynamical downscaling

Chan Joo Jang, Chul Min Ko, Chun Yong Jung Korea Institute of Ocean Science & Technology

CMIP5 Modeling Groups Reference: Historical Experiment

Modeling Center •	Model	Institution	Country
BCC (2)	BCC-CSM1.1 BCC-CSM1.1(m)	Beijing Climate Center, China Meteorological Administration	
CCCma (2)	CanCM4 CanESM2	Canadian Centre for Climate Modelling and Analysis	
CMCC (3)	CMCC-CESM CMCC-CM CMCC-CMS	Centro Euro-Mediterraneo per I Cambiamenti Climatici	
CNRM-CERFACS (2)	CNRM-CM5 CNRM-CM5-2	Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formati on Avancees en Calcul Scientifique	
CSIRO-BOM (2)	ACCESS1.0 ACCESS1.3	CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)	Australia
CSIRO-QCCCE (2)	CSIRO-Mk3.6.0 CSIRO-Mk3L-1.2	Commonwealth Scientific and Industrial Research Organisation in collaboration with the Quee nsland Climate Change Centre of Excellence	Australia
EC-EARTH (1)	EC-EARTH	EC-EARTH consortium	Europe
FIO (1)	FIO-ESM	The First Institute of Oceanography, SOA, China	China
GCESS (1)	BNU-ESM	College of Global Change and Earth System Science, Beijing Normal University	China
INM (1)	INM-CM4	Institute for Numerical Mathematics	Russia
IPSL (3)	IPSL-CM5A-LR IPSL-CM5A-MR IPSL-CM5B-LR	IR MR Institut Pierre-Simon Laplace Fran	
LASG-CESS (1)	FGOALS-g2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University	China
LASG-IAP (1)	FGOALS-s2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences	China
MIROC (2)	MIROC4h MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for En vironmental Studies, and Japan Agency for Marine-Earth Science and Technology	Japan
MIROC (2)	MIROC-ESM MIROC-ESM-CHEM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research I nstitute (The University of Tokyo), and National Institute for Environmental Studies	Japan
MOHC (additional real izations by INPE) (3)	HadCM3 HadGEM2-CC HadGEM2-ES	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nac nal de Pesquisas Espaciais)	
MPI-M (3)	MPI-ESM-LR MPI-ESM-MR MPI-ESM-P	Max Planck Institute for Meteorology (MPI-M)	
MRI (2)	MRI-CGCM3 MRI-ESM1	Meteorological Research Institute	Japan
NASA GISS (4)	GISS-E2-H GISS-E2-H-CC GISS-E2-R GISS-E2-R GISS-E2-R-CC		USA
NCAR (1)	CCSM4	National Center for Atmospheric Research	USA
NCC (2)	NorESM1-M NorESM1-ME	Norwegian Climate Centre	Norway
NIMR/KMA (1)	HadGEM2-AO	National Institute of Meteorological Research/Korea Meteorological Administration	South Korea
NOAA GFDL (4)	GFDL-CM2.1 GFDL-CM3 GFDL-ESM2G GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory	USA
NSF-DOE-NCAR (5)	CESM1(BGC) CESM1(CAM5) CESM1(CAM5.1, FV2) CESM1(FASTCHEM) CESM1(WACCM)	National Science Foundation, Department of Energy, National Center for Atmospheric Research	USA

Country	Number of Models	# of center
Australia	4	2
Canada	2	1
China	6	5
Europe	1	1
France	5	2
Germany	3	1
Italy	3	1
Japan	6	3
Norway	2	1
Russia	1	1
South Korea	1	1
UK	3	1
USA	14	4
13	51	24

CMIP5 Improvement: PDO

Jo et al 2014 submitted to J. Clim.

A Hot Spot of changes: Western North Pacific

Winter SST Trend for 1980 ~ 2010

CHL year-to-year variability Spring (April) CHL

RCM nesting focusing on Korean seas

Downscaling GW Exp. Plans

Ocean dynamical downscaling modeling system (atmos is inverstigate the influence of the atmospination)
 Inverstigate the influence of the atmospination of the atmospination

- Ocean dynamical downscaling from **one-way** coupled ocean-atmosphere modeling system (atmos \Longrightarrow ocean)
 - : Inverstigate the influence of the atmospheric model downscaling on the simulation
 - **(1)** An experiment will be carried out using GCM's atmospheric output (no downscaling)
 - ② An experiment will be carried out using atmospheric model dynamical downscaling by WRF
- Ocean dynamical downscaling from fully coupled ocean-atmosphere modeling system (atmos <>> ocean)
 - An experiment will be carried out using ROMS WRF coupled model
 - ② An experiment will be carried out using MITgcm RegCM4 coupled model

Evaluation of the CMIP5 CGCMs for dynamical downscailing : Climatological P annual cycle over East Asia (85E-150E, 5N-60N) for 1961 ~ 2000

CMIP5 models without offset over high terrains

- 17 models (no shading in previous Table) provides wind data over high topography
- Among them, Multi-Variate EOF (MVEOF) was not applicable to "INMCM4".
- MVEOF was applied to climatological annual cycle obtained from 16 models.

Designation	nz	nt	start year
1. BCC-CSM1-1	17	1956	1850
2. BCC-CSM1-1-M	17	1956	1850
3. BNU-ESM	17	1872	1850
4. CMCC-CESM	33	1872	1850
5. CMCC-CM	17	1872	1850
6. CMCC-CMS	33	1872	1850
7. CNRM-CM5	17	1872	1850
8. CanCM4	22	540	1961
9. CanESM2	22	1872	1850
10. FIO-ESM	17	1872	1850
11. HadCM3	17	1753	Dec 1859
12. MPI-ESM-LR	25	1872	1850
13. MPI-ESM-MR	25	1872	1850
14. MPI-ESM-P	25	1872	1850
15. NorESM1-M	17	1872	1850
16. NorESM1-ME	17	1872	1850

KIOST MVEOF for climatological annual cycle (1/2) : East Asia (85E-150E, 5N-60N)

Evaluation of CMIP5 models (summer precipitation)

Evaluation of CGCM performance

Squared correlation from monthly climatology (PCC) Climatological monthly mean: Seasonal evolution

60°N

40°N

20°N

00

80°E

RCM with GCM forcing

160°E

160°W

12

ROMS V3.2			
Domain	105°E~175°E,10°N~55°N		
Horizontal resolution	1/12°(≒10km)		
Vertical layers	30 layers		
	SODA V2.2.4 monthly mean reanalysis data (u, v, temp. salt. ssh)		
I.C & B.C	NCEP RA2 daily mean reanalysis with bulk formula and PGW method		
Vertical mixing scheme	KPP		

120°E

RCM Downscaling PGW

Present: 1981-2000, Future: 2081-2100

RCM Projected Changes: Preliminary Results

Projected SST change

Changes: SST vs. Heat flux

SSH change (winter)

White contours: Present, Red : Future

Color shading: SST change

Projected SST changes (RCM vs. CanESM2)

SST change

Red : Future Black : Present Green : Levitus Blue : Difference

CanESM2 SST change

Red : Future Black : Present Green : Levitus Blue : Difference

Seasonal SSS change RCM

SSS change: RCM vs. GCM

Present MLD (March)

23

MLD change (March) RCM vs. GCM

Downscaling for atmosphere

• Pseudo Global Warming Downscaling (PGWDS)

• A column-integrated moisture budget

$$\frac{\partial w_A}{\partial t} + \nabla \cdot \frac{1}{g} \int_0^{sfc} q \vec{V} \, dp = E - P \qquad \text{(Trenberth and Guillemot, 1995)}$$

$$\text{Where, } w_A = \frac{1}{g} \int_0^{p_s} q \, dp \qquad \text{Let, } <> = \frac{1}{g} \int_0^{sfc} dp \qquad \qquad \frac{1}{g} \int_0^{sfc} \vec{V} \cdot \nabla q \, dp \qquad \qquad \frac{1}{g} \int_0^{sfc} \vec{V} \cdot \nabla q \, dp \qquad \qquad \frac{1}{g} \int_0^{sfc} \vec{V} \cdot \nabla q \, dp \qquad \qquad \text{moisture flux div.}$$

$$precip = -\langle q \nabla \cdot \vec{V} \rangle - \langle \vec{V} \cdot \nabla q \rangle + E - \frac{\partial w_A}{\partial t} \qquad \qquad 25$$

Projected precipitation changes and analysis

Summer (MJJA) mean precipitation

• Moisture diagnoses of precipitation change

Area averaged precip. (26N~30N, 110E~115E)

Area averaged precip. (30N~35N, 110E~115E)

Future works

- RCM evaluation & improvement
- Comparison with existing downscaling projection (mostly AR4)
- Ocean downscaling with downscaled atmosphere for global warming projection
- Identify some added value by the RCM projection
- Ensemble experiments
 - Multi-scenarios
 - Multiple warming exp. Approaches

RCM biases (present - Levitus)

Added Value by ORCMs

29

Thank you