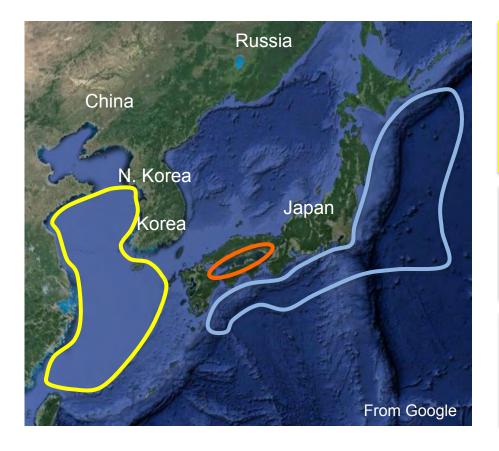

Ecosystem responses to anthropogenic activities and natural stressors among inland, shelf and oceanic waters in the western North Pacific

Motomitsu TAKAHASHI^{1*}, Sachihiko ITOH², Naoki YOSHIE³, Kazuhiko MOCHIDA⁴, Masakazu HORI⁴, Shigeru ITAKURA⁵, Mingyuan ZHU⁶

Seikal National Research Institute, FRA, Japan (takahamt@fra.affrc.go.jp)
 ²Atmosphere and Ocean Research Institute, The University of Tokyo, Japan
 ³Center for Marine Environmental Studies, Ehime University, Japan
 ⁴National Research Institute of Fisheries and Environment of Inland Sea, FRA, Japan
 ⁵National Research Institute of Aquaculture, FRA, Japan
 ⁶The First Institute of Oceanography, State Oceanic Administration, China

Background

Understanding cumulative impacts of multiple stressors is urgent issues for sustainable use of ecosystem serveices.



Halpern et al. (2008)

Ban et al. (2010)

PICES WG-28 has been trying to develop ecosystem indicators to characterize ecosystem responses to multiple stressors.

Waters comparing ecosystem responses in the western North Pacific

Shelf waters (4) East China Sea Yellow Sea

Inland waters (25) Seto Inland Sea

Oceanic waters (7) Kuroshio/Oyashio

Expert elicitation was adopted to evaluate ecosystem responses to multiple stressors in each ecosystem.

Habitats-stressors matrix

Impacts of human activities and natural stressors were evaluated using the habitat-stressors matrix.

Human activities

Natural stressors

Activities/Stressors	Intertidal	Coastal	Shelf	Oceanic
 Pollution from land Coastal engineering 	1. Rocky	1. Seagrass	1. Soft bottom	1. Soft bottom slope
3. Coastal development	2. Beach	2. Kelp forest	2. Hard bottom	2. Hard bottom slope
4. Direct human impact 5. Ecotourism	3. Mud	3. Rocky reef	3. Ice	3. Soft bottom benthic
6. Commercial activity	4. Salt marsh	4. Suspension	4. Pelagic water	4. Seamount
7. Aquaculture		feeder reef	column	5. Vents
8. Fishing – demersal		5. Sub-tidal soft bottom		6. Soft bottom canyon
9. Fishing – pelagic		SOIL DOLLOIT		7. Hard bottom canyor
10. Fishing – illegal				8. Deep pelagic
11. Offshore development				water column
12. Pollution from ocean 13. Freshwater input				9. Upper pelagic
14. Sediment input				water column
15. Nutrient input				
16. HABs				
17. Нурохіа				
18. Species invasion				
19. Sea level change				
20. Sea temperature				

Scoring vulnerabilities

For each cell, vulnerabilities were scored as spatial scale, frequency, functional impact, resistance, recovery time.

	Weak 🤇	1 J		Strong
Vulnerabilities	1	2	3	4
Spatial scale	< 10 km ²	10-100 km ²	100-1000 km ²	> 1000 km ²
Frequency	> 5 yrs	1-5 yrs	Seasonal	Continuous
Functional impact	Species	Single trophic	Multitrophic	Community
Resistance	Positive impact	High	Moderate	Low
Recovery time	< 1 yr	1-10 yrs	10-100 yrs	> 100 yrs

For each vulnerability, certainty was scored as 4 levels.

	Unsure <	л V		Sure
	1	2	3	4
Certainty	< 15 %	15-50 %	50-85 %	> 85 %

How to treat scores

Impacts (I) of stressors were evaluated using the weighted mean vulnerability (v) with certainty (c).

 $I = \Sigma V \cdot C / C_{total}$

Habitat	Sub-habitat	Activity/Stressor	•	atial ale	Frequ	uency		phic bact		tance ange		overy ne	Impact:
			V	С	v	С	V	С	v	С	V	С	
INTERTIDAL	beach	Fishing - pelagic	2	2	3	2	2	2	2	2	2	2	2.10
COASTAL	sub-tidal soft bottom	Nutrient inputs	2	2	2	2	2	2	2	2	2	2	2.00
COASTAL	sub-tidal soft bottom	Coastal engineering	3	4	3	4	4	3	4	4	3	3	3.11
SHELF	soft bottom	Freshwater input	4	3	3	3	3	3	3	2	3	2	3.00
SHELF	soft bottom	Sediment input	3	3	4	3	3	2	2	2	2	2	2.50
SHELF	soft bottom	Nutrient inputs	3	3	4	3	3	3	2	3	3	2	2.64
SHELF	soft bottom	Polution from land	3	3	4	3	3	3	3	3	3	2	2.86
SHELF	soft bottom	Fishing - demersal	4	3	4	3	4	3	4	3	3	3	3.47
SHELF	soft bottom	Fishing - pelagic	3	3	4	3	2	3	3	3	3	3	2.67
SHELF	soft bottom	Sea temperature	4	4	4	4	4	4	3	3	3	3	3.22
SHELF	soft bottom	HABs	2	3	3	3	3	3	3	3	3	3	2.60
SHELF	soft bottom	Нурохіа	2	2	3	2	3	3	4	2	3	2	2.91
SHELF	soft bottom	Offshore development	1	3	2	2	3	3	3	2	2	2	2.17
OCEANIC	soft bottom slope	Sea temperature	4	4	4	4	4	4	3	3	3	3	3.22

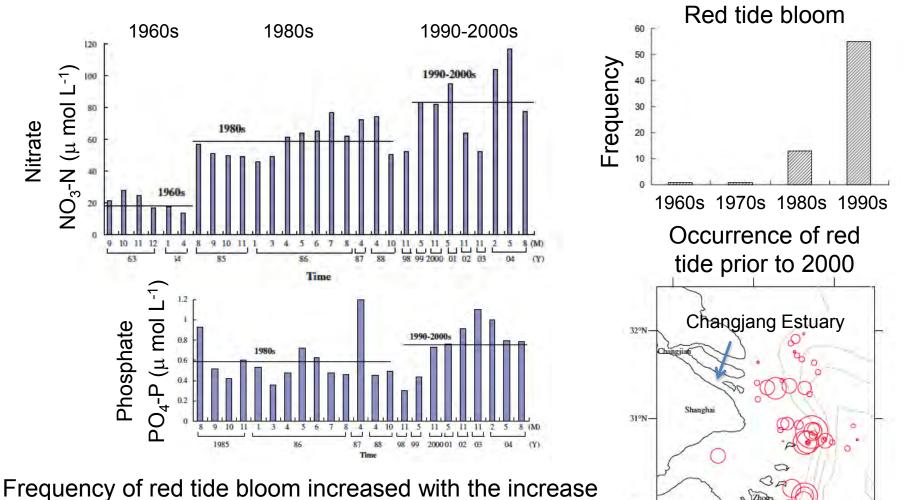
East China and Yellow Seas (Shelf water)

			≦	2.0		2.1-2	2.5	2.6-3.0	3.1-	3.5
		Inte	rtidal			(Coastal		Shelf	
Activities/Stressors	Rocky	Mud	Salt marsh	Beach	Sea grass	Rocky reef	Suspention feeder reef	Sub-titdal soft bottom	Soft bottom	Pelagic water column
1. Pollution from land	2.8	2.8	2.5	2.5	2.5	2.8	2.5	2.8	2.9	2.9
2. Coastal engineering	3.5	3.5	3.3	3.3	3.3	3.5	3.3	3.3		
3. Coastal development	3.5	3.5	3.3	3.3	3.3	3.5	3.3	3.5		
8. Fishing - demersal									3.5	
9. Fishing - pelagic				2.1						3.1
11. Offshore development									2.1	
12. Pollution from ocean									3.1	3.1
13. Freshwater input	2.9	2.9	2.6	2.6	2.9	2.9	2.9	2.9	3.0	3.0
14. Sediment input									2.5	
15. Nutrient input	3.1	3.1	2.8	2.8	2.8	3.1	2.8	2.5	3.0	3.3
16. HABs									2.6	2.9
17. Hypoxia									3.2	
18. Species invasion	2.5	2.5	2.3	2.3	2.3	2.5	2.3	2.5		2.9
20. Sea temperature									3.2	3.2

1. Coastal development strongly affects to the intertidal and coastal waters.

2. Pollution from land and nutrient input impact through intertidal to shelf waters.

3. Fishing and increasing temperature affects strongly to the shelf waters.


Reclamation in the Yellow Sea

Jiangsu Province

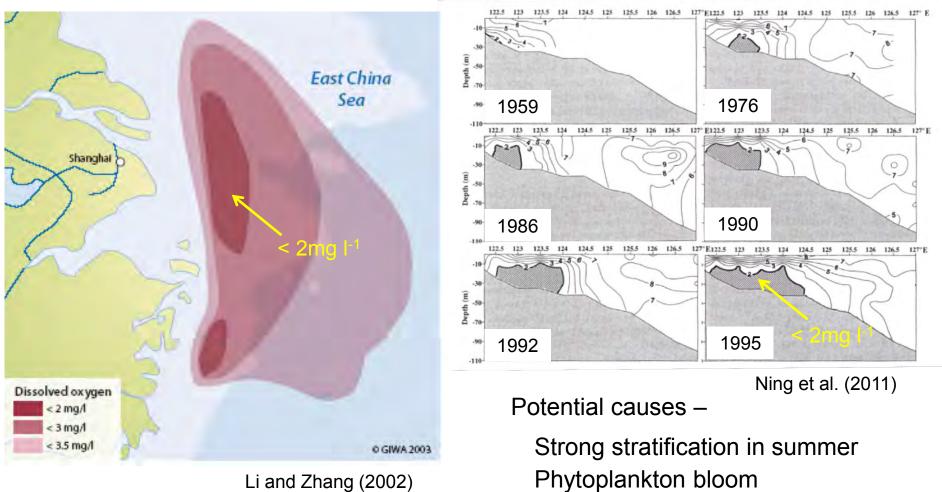
- Presently, over 5000 km² coastal wetlands, about one-fourth of China's total.
- Over 1300 km² coastal wetlands reclaimed over the past 15 years
- Plans to reclaim another 1800 km² by 2020

Nutrient increase and harmful algal bloom off the Changjang Estuary

in nutrient input after 1980s off the Changjang Estuary.

Zhou et al. (2008)

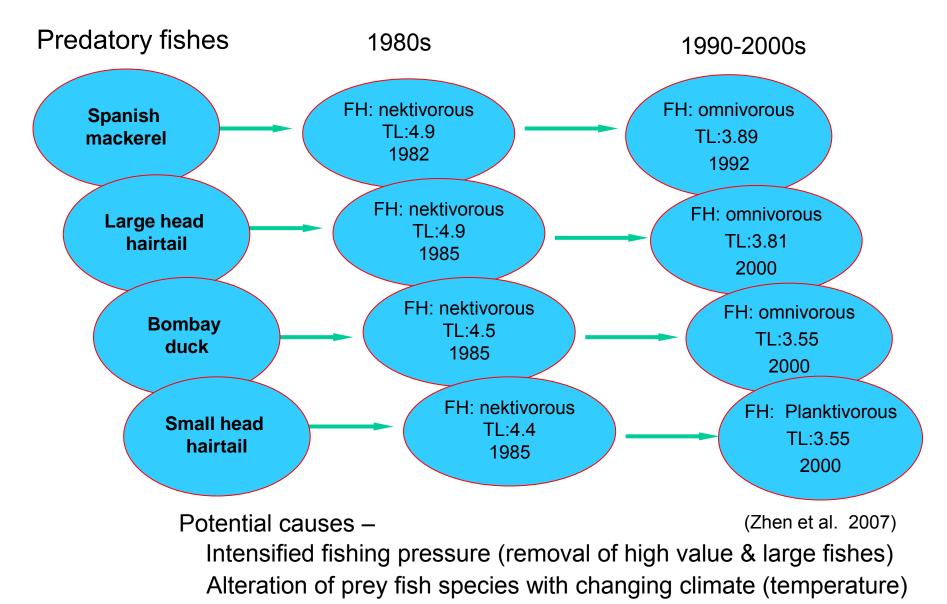
30°N-


Zhejiang Province

121°E

122°E

123°E


Hypoxia: dissolved oxygen off the **Changjang Estuary in summer**

Taiwan Warm Current

Li and Zhang (2002)

Feeding habits of predatory fish species in the Yellow Sea during 1980-2000

Seto Inland Sea (Inland water)

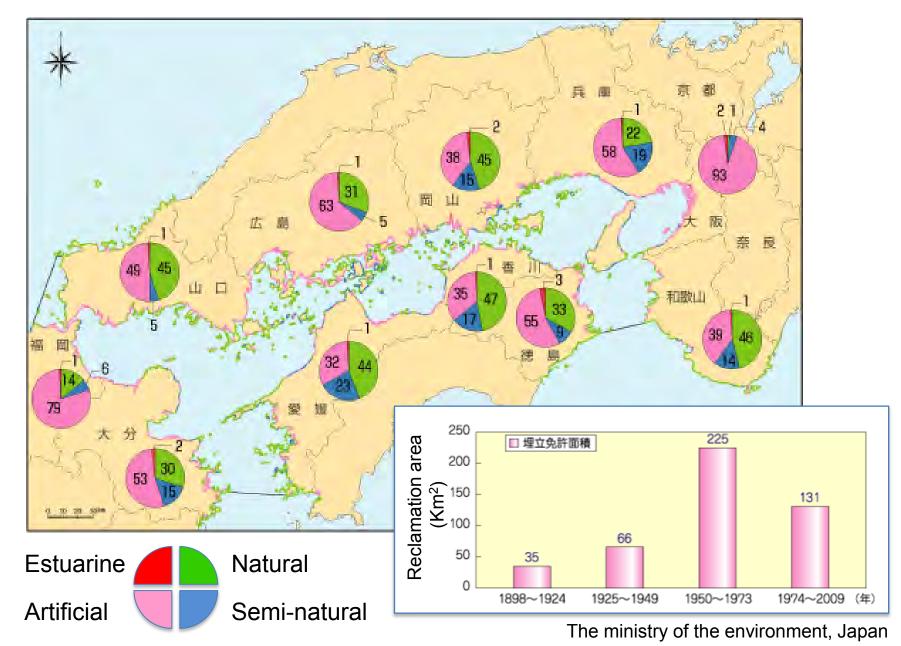
2.6-3.0

3 1-3 5

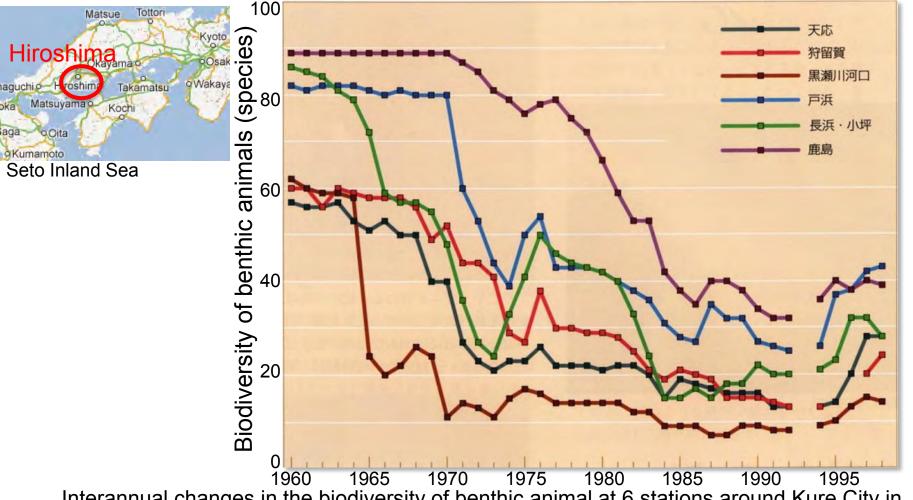
36-40

2.1-2.5

 ≤ 2.0


		$\equiv 2.0$		2.1 2.0		0.0	0.1	0.0	0.0-+	.0
		Inter	tidal				Coastal			Shelf
Activities/Stressors	Rocky	Mud	Salt marsh	Beach	Seagrass	Kelp forest	Rocky reef	Suspentio n feeder reef	Sub-titdal soft bottom	Pelagic water column
1. Polution from land	2.8	3.0	3.0	2.9	2.9	3.0	2.8	3.0	3.1	3.4
2. Coastal enginnering	3.3	3.4	3.1	3.2	3.2	3.2	3.1	3.1	3.2	3.5
3. Coastal development	3.2	3.3	3.1	3.2	3.2	3.2	3.1	3.0	3.0	3.8
4. Direct human impact	3.1	3.2	3.0	3.1	3.0	3.0	2.9	3.0	3.0	
5. Ecotourism	2.3	2.4	2.3	2.4	2.3	2.3	2.3		2.4	
6. Commertial activity	3.1	3.1	3.0	2.9	2.9	2.9	3.0	3.0	3.1	
7. Aquaculture		3.1	3.0		3.0	3.2	2.9	3.1	3.1	2.8
8. Fishing - demersal	2.3	2.9	2.9		2.8	2.8	2.9	3.2	3.2	3.7
9. Fishing - pelagic		3.0	3.0		2.2	2.2	2.0	2.9	2.7	3.6
10. Fishing - illecal	2.2	2.5	2.5			2.3	1.7	3.0	3.1	3.1
11. Offshore										
development		3.0	3.0	3.0	2.8	2.8	3.0	2.9	2.6	
12. Polution from ocean	3.0	3.2	3.1	3.0	3.0	2.8	2.7	2.8	2.8	
13. Freshwater input	2.8	2.8	2.7	2.8	2.7	2.5	2.4	2.7	2.5	3.5
14. Sediment input	3.0	2.9	2.8	2.9	2.8	2.9	2.2	2.7	2.7	2.8
15. Nutrient input	3.4	3.2	3.1	3.3	3.0	3.0	3.0	3.0	3.0	2.9
16. HABs	2.5	2.7	2.7	2.4	2.6	2.8	2.8	3.0	3.0	2.4
17. Hypoxia	3.0	2.9	2.8	2.7	2.7	2.8	2.7	3.0	3.0	2.8
18. Species invasion	2.9	2.9	2.9	2.9	2.9	3.0	3.0	2.8	2.8	2.7
19. Sea level change	3.2	3.1	3.1	3.2	3.3	3.1	3.0	3.1	2.9	2.9
20. Sea temperature					3.4					3.5

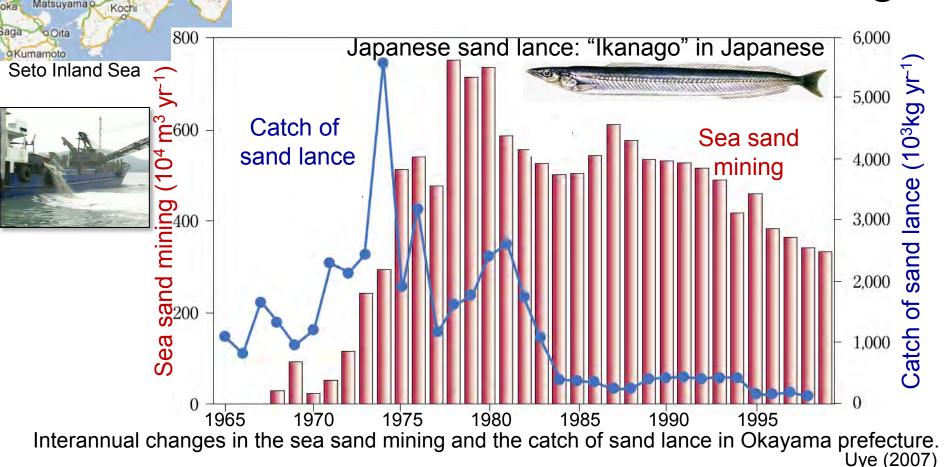
1. Coastal development and engineering affects to the ecosystem directly.


2. Pollution from ocean and nutrient input affects to water quality.

3. Sea level change and increasing temperature affect to the entire waters.

Coastal development reduced natural shore lines

Trends in biodiversity of benthic animal



Interannual changes in the biodiversity of benthic animal at 6 stations around Kure City in Hiroshima prefecture. Fujioka (2000)

From the mid '60s to mid '90s, the biodiversity of benthic animals had been decreased by environmental degradation.

After the mid '90, it has been recovered with environmental reclamation.

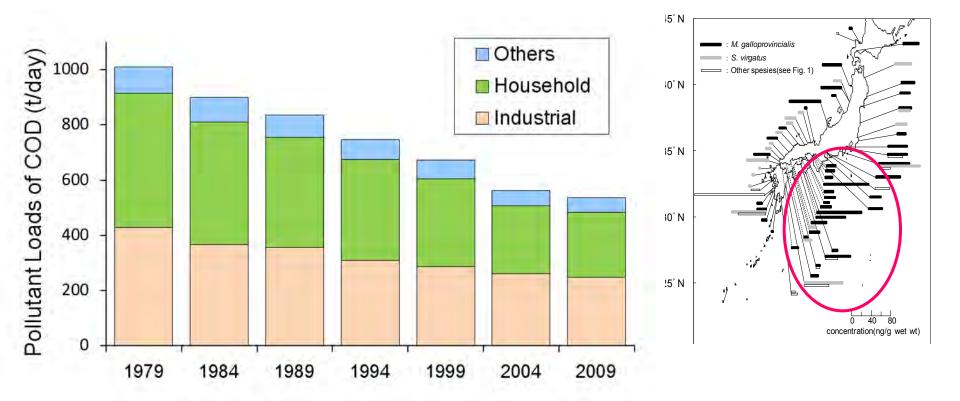
Decrease in the catch of sand lance associated with the sea sand mining

Matsue

HIROShip Rayana

aguchio Hiroshima

Totto


Okavama

Kyoto

Wakaya

The catch of the sand lance decreased with the sea sand mining from the sand bank in the Seto Inland Sea. The more high-value fishes (e.g. sea bream, Japanese seaperch etc.) also decreased with decrease of their prey, sand lance.

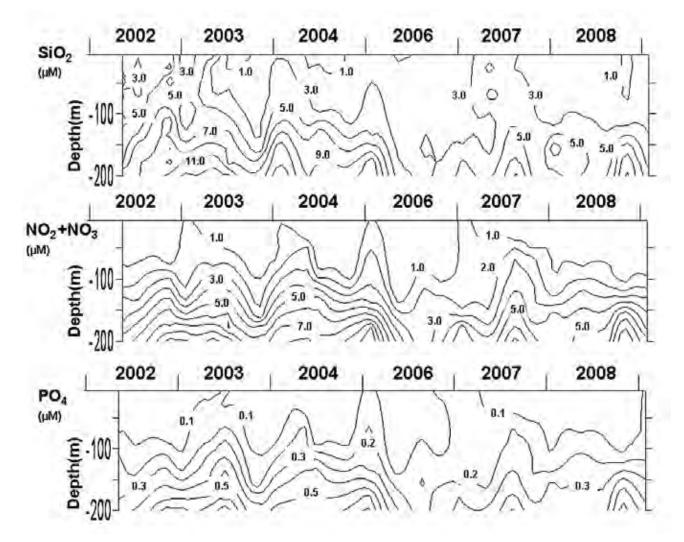
Pollutant load into the Seto Inland Sea

Pollutant load into the Seto Inland Sea has decreased continuously since the end of 1970s. The ministry of the environment, Japan

Distribution of polycyclic aromatic hydrocarbons (PAHs) in the bivalves collected from the coastal waters of the Inland Sea (red circle) shows that pollution still impacted the coastal ecosystems.

Tanaka and Oniduka (2010)

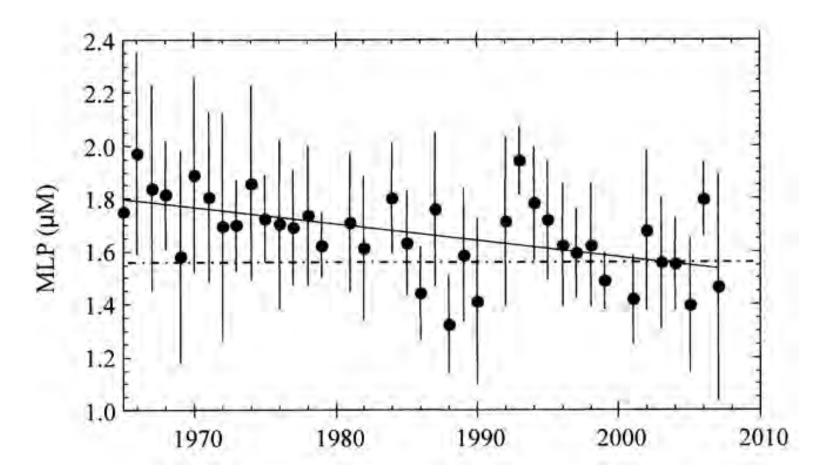
Kuroshio/Oyashio (Oceanic waters)


≦ 2.0 2.1-2.5 2.6-3.0 3.1-3.5

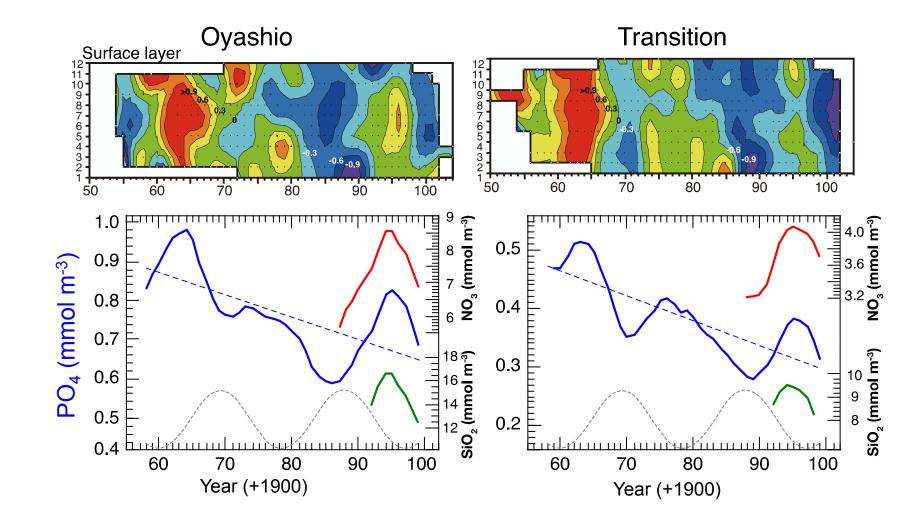
	Sh	elf	Oceanic
Activities/Stressors	Pelagic water column	Soft bottom	Upper pelagic water column
8. Fishing - demersal		3.2	2.3
9. Fishing - pelagic	3.3		3.2
15. Nutrient input	3.2		2.9
17. Hypoxia	3.0	3.0	
19. Sea level change			3.2
20. Sea temperature	3.2	3.3	3.1

1. Increasing temperature affects to the entire waters.

2. Decreasing DO and nutrient concentrations are observed


Decrease in nutrient concentration (Kuroshio)

Decreasing trend of nutrient concentrations, possibly due to the rise in water temperature (increasing stratification)


Sugisaki et al. 2010, PICES Special Publication

Decrease in nutrient concentration (Oyashio)

Decreasing trend of nutrient concentration within mixed layer, causing the decrease in net community production (Ono et al. 2002)

Decadal variability in nutrient concentrations

Besides the decreasing trend in surface phosphate concentration, largeamplitude decadal fluctuation was observed, which was synchronous to 18.6-year nodal-tidal cycle.

Tadokoro et al. (2009)

Main stressors impacting ecosystems in the shelf, inland and oceanic waters

Activities/Stressors	ECS/YS	SETO	K/O	
1. Polution from land	2.7	3.0		
2. Coastal enginnering	3.4	3.2		
3. Coastal development	3.4	3.2		
4. Direct human impact		3.0		
5. Ecotourism		2.3		
6. Commertial activity		3.0		
7. Aquaculture		3.0		
8. Fishing - demersal	3.5	2.9	2.8	
9. Fishing - pelagic	2.6	2.7	3.3	
10. Fishing - illegal		2.6		
11. Offshore development	2.1	2.9		
12. Polution from ocean	3.1	2.9		
13. Freshwater input	2.9	2.7		
14. Sediment input	2.5	2.8		
15. Nutrient input	2.9	3.1	3.0	
16. HABs	2.8	2.7		
17. Hypoxia	3.2	2.8	3.0	
18. Species invasion	2.5	2.9		
19. Sea level change		3.1	3.2	
20. Sea temperature	3.2	3.5	3.2	

Coastal development and engineering have strong impacts to the ECS/YS and the SETO.

Demersal and pelagic fishing impact to the ECS/YS and the K/O, respectively.

Nutrient input has resulted in HABs and Hypoxia in summer.

Increasing sea temperature affects strongly to all 3 ecosystems.

Conclusions

- Expert elicitation methods using the habitat-stressor matrix were applied to evaluate ecosystem responses to multiple stressors.
- Coastal development and engineering have strong impacts to the shelf and inland waters.
- Excessive input of nutrient causes harmful algal bloom and hypoxia in summer in the shelf water.
- Increasing temperature impact strongly in the 3 ecosystems.
- Need more responses for evaluation in the shelf and oceanic waters.