Reading Between the Lines: Bivalve Growth Rate and Isotopic Variations Across the Barents Sea Polar Front

Michael L. Carroll

Akvaplan-niva, Tromsø Norway

William Ambrose, William Locke, Stuart Ryan, Gregory Henkes Bates College, Lewiston ME, USA

ESSAS OSM, Seattle 23 May 2011

Moving from Variability to Change

Dendrochronology

Sclerochronology

Arctica islandica (hinge cross section)

Question

What is the influence of the water mass (Polar Front) in regulating benthic ecological function in the Arctic?

- <u>Compare growth rates</u> and temporal growth patterns of bivalve populations in close proximity but with different water masses
- <u>Identify relationships</u> between growth patterns and environmental drivers
- <u>Assess dietary sources</u> from tissue stable tissue isotopes

Clinocardium ciliatum

- 50 year max age
- Soft-sediment dweller
- Suspension feeder

Sampling Locations

Arctic Water:

B25 – 80 m B26 – 100 m B27 – 120 m

<u>Polar Front</u>: B28 – 140 m B29 – 160 m

<u>Atlantic Water</u>: B30 – 180 m

Sampling in May 2008, Sept. 2009 Total transect length – 70km

Physical Setting

Water Mass Properties

Image: Vladimir Pavlov Norwegian Polar Institute

Overall Growth Rates

Interannual Growth Patterns (SGI)

Similarity of SGI pattern: Arctic→Atlantic→Polar Front

Environmental Drivers (time series)

Atmospheric (large-scale)

- NAO, AO, AMO, Arctic Climatic Regime Index (ACRI)

Oceanographic Time Series

 Sea Temp. (Kola Time Series, West Spitsbergen Current), Sea Ice Cover

Meteorological Variables

- Air Temp., Pressure, Precipitation

Environmental Relationships

Sea Ice Influence on Growth

AMO Influence on Growth

Statistical Model

GLM, Multiple regression (Forward Stepwise)

	Arctic	Polar Front	Atlantic
Ice Free Days	*		
AMO	-		*
NAO		*	
Kola Sea Temp.		_	
Bjørnøya Precip.			
Total Variability Explained (R ²)	0.35	0.57	0.64

Stable Isotopes in Food Web Studies

- Consumers are enriched in heavy <u>Nitrogen</u> isotopes compared to their diet.
 - $^{15}N/^{14}N$ generally increases (3–4 ‰) with trophic position.
- For <u>Carbon</u>, there is little frattionation with trophic position.
 - ¹³C/¹²C can thus be used to trace carbon sources in systems where two isotopically distinct carbon sources are present

"YOU ARE WHAT YOU EAT!"

Clinocardium Tissue Stable Isotope

2.3 ‰

Seasonality in Food Supply

Food source most seasonally variable at Polar Front

Trophic level seasonally variable at Polar Front and Atlantic

Food Sources for Bivalve Growth

- Phytoplankton
- δ¹³C -24, δ¹⁵N 4.0

Ice Algae δ¹³C -20, δ¹⁵N 1.8

- Søreide et al. 2006
- Tamelander et al. 2006

Trophic Step: $\delta^{13}C = 0.6 \%$ $\delta^{15}N = 3.4 \%$

The Arctic Annual Cycle

www.nfh.uit.no/arctos/

Summary

- Overall growth rates are highest in the Atlantic domain and lowest at the Polar Front in the Barents Sea
- Interannual growth patterns reflect variation in cyclic oscillatory climatic modes and sea ice
 - Atlantic populations appear more sensitive to environmental variability
 - Periods with colder conditions were associated with enhanced growth
- Tissue stable isotope signatures reveal different food sources and seasonality patterns among water masses
- The combined response to sea ice and the isotopic signatures suggests that ice algae might be a key food source to this species
- Continued sea ice attenuation as predicted by climate models could lead to poorer performance of benthos