

Optically derived primary production and size structure of phytoplankton in the polar oceans

T. Hirawake, A. Fujiwara, S. Takao, K. Shinmyo and S-I. Saitoh

Laboratory of Marine Bioresource and Environment Sensing

May 23, 2011

Introduction

Biological pump, structure of food web (eg. Nishino et al, 2010; Grebmeier et al, 2006)

1

Introduction

Satellite ocean color remote sensing data has been applied to study carbon cycles and marine ecosystem, even in the polar ocean.

Chlorophyll a (chl a) concentration is a main product of ocean color.

Uncertainty of chl a estimation in polar oceans

- due to package effect in diatom dominant water = underestimation (eg. Mitchell, 1992, Hirawake et al, 2000)
- due to high absorption by colored dissolved organic matter (CDOM) in the Arctic Ocean = overestimation (eg. Cota et al. 2004)

Introduction

Recent progress of in-water optical models (eg. Lee et al. 2004; Maritorena et al. 2001)

Accurate estimation of Inherent optical properties (IOPs)

- Light absorption coefficient of phytoplankton
- Light scattering coefficient of particles

4

- Primary productivity and size structure are possible to be derived optically using IOPs.
- Use of IOPs instead of 'Chl a' is becoming increasingly accepted (eg. Shang et al 2011; Marra 2007; Lee et al 1996; Cullen 1982)

Objectives

- To develop IOPs based models (algorithms) to derive primary productivity and phytoplankton size in the polar oceans.
- To apply the models to satellite ocean color data and assess those spatiotemporal variability.

Materials and Methods

in situ optical measurements

Data were collected in 2003-2009 mainly during IPY (2007-2009).

Primary productivity (¹³C, 24h incubation)

•Absorption coefficient of phytoplankton (Glass fiber filter technique)

•Scattering coefficient of particles (VSF, HS6P)

•Pigments concentration (HPLC, fluorometry)

•PAR (LI-COR)

•Spectral radiation (PRR, SPMR, HyperPro)

Absorption based primary production model (ABPM)

Hirawake et al. 2011 Polar Biology

Phytoplankton size deriving model (SDM) (Arctic Ocean)

8

Phytoplankton size index: $F_L = Chla_{>5\mu m} / Chla_{total}$ Contribution of larger sized (> 5µm cell) phytoplankton to total biomass

Absorption coefficient of phytoplankton

Scattering coefficient of particles

Fujiwara et al 2011, BGD

aph(488)/aph(555)

Results: Performance of absorption based primary production model (ABPM)

Results: Performance of absorption based primary production model (ABPM)

Results: Performance of phytoplankton size deriving model (SDM)

Canada Basin in August

Northern Chukchi Shelf in August

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

HOKKAIDO UNIVERSITY

Histogram of F_L in the Northern Chukchi Shelf in August

Increase of small size phytoplankton community with
warming and freshen(Li et al., 2009: Science 326)

Interannual variability in PP, FL & SST in September

- Significant increase in PP and size index (r²=0.59, p<0.05)
- SST did not increase significantly.

Summary & conclusion

- New models using IOPs showed good performance in the Arctic Ocean.
- Smaller phytoplankton is increasing in August of recent years.
- Both primary productivity and phytoplankton size in September increased.
- These suggests increase in opportunities of phytoplankton grow in September due to less sea ice and resupply of nutrient by vertical mixing.

