Current observations at the Jan Mayen Ridge

Kjell Arne Mork¹, Ken Drinkwater¹, Steingrimur Jónsson², Hédinn Valdimarsson²

 ¹ Institute of Marine Research and Bjerknes Centre for Climate Research, Bergen, Norway
 ² Marine Research Institute, Iceland

SINSTITUTTET ESSAS Open Science Meeting Seattle 2011

The main surface currents in the North Atlantic

Atlantic water \rightarrow Arctic water \rightarrow

IPY-NESSAR

Sharp fronts where the warm and saline Atlantic water meets the cold and fresher Arctic water

IPY-Nessar: Focus on the - ecosystem at the front

Field work:

June 2007 & June 2008

IMR (Norway) and MRI (Iceland) deployed two and one mooring, respectively, which included several instruments for current measurement

Three moorings deployed at the Jan Mayen Ridge

Jan Mayen

Purpose:

To investigate water exchanges between the Norwegian and Iceland Sea

Measurement period: JM-1 and JM-2: 2007-2009 Dreki: 2007-2008

The moorings had several different instruments for current measurements

ADCP, RDCP, RCM

Tor Villy with the Nortek ADCP

Temperature and salinity across the Ridge

JM-1

7 days moving averages. Every second day is presented.

JM-1, eastward velocity

Blue color indicates flow into the Iceland Sea. Data are 14 days moving averages.

JM-2 (velocity rotated 20°)

Blue color indicates flow into the Iceland Sea. Data are 14 days moving averages.

Bottom current

Velocity across the Jan Mayen Ridge near the bottom at JM-1 and JM-2. The velocity at JM-2 is rotated 20 degrees CCW. The velocity are three months moving averages.

Seasonal variation

Seasonal averaged velocity with standard error. Red color: eastward (directed to the Norwegian Sea), blue color: westward.

Dreki

Currents from vessel mounted ADCP (Feb-2008)

Mean current field (schematic)

Winter

Summer

Forcing?

➤The deep/depth averaged circulation in the Norwegian Sea and Nordic Seas are largely influenced by the wind stress curl (e.g., Isachsen et al., 2003; Nøst and Isachsen, 2003; Voet et al., 2010)

➤The deep circulation is stronger during winter compared to summer (Voet et al., 2010; Mork and Skagseth, 2005).

Deep circulation (~1000 m) from Argo floats (Voet et al., 2010).

Bottom current vs sea level height and wind

Normalized time series of sea level height at the Jan Mayen Ridge and bottom current at JM-2

Normalized time series of bottom current at JM-2 and wind stress curl in the Norwegian Sea (opposite directed).

r=-0.5

Jan

Apr

2009

Jul

Strong semi-diurnal oscillation

Amplitude of rotation direction (instead of u and v) for the semi diurnal period.

CW=Clock Wise, CCW=Counter Clock Wise

Zooplankton migration?

Using signal (backscatter) from ADCP (190 kHz)

Seasonal migration

Daily migration

Main results

- Weak flow (low stability) from the Norwegian Sea to the Iceland Sea at JM-1. Seasonal changes in the bottom current.
- Seasonal variation at JM-2 (in the deep channel):
 Upper layer, winter: flow to the Iceland Sea, summer: opposite
 Deep water, from the Norwegian Sea into the Iceland Sea both summer and winter
- Link to the wind stress curl in the Norwegian Sea
- □ Northwards (barotropic) current at Dreki
- □ Strong semi-diurnal (inertial) oscillation

