Vertical distributions of T, S, PO₄, humic F-intensity, and [D-Fe] in the surface water (0–500 m) of the slope and shelf regions

****Subsurface maxima of nutrient, humic F-intensity and [D-Fe] in Upper HL** Three main processes to form the subsurface maxima of chemical components in Upper HL

(1) Brine rejection during sea ice formation

Formation of dense shelf water with low-temperature and high-salinity

- (2) Interactions between brine waters and sediments in the shallower shelves Supply of nutrient, humic-type FDOM and D-Fe from shelf sediments to the overlying water
- (3) Inflow of the Atlantic water with low nutrient, humic-type FDOM and D-Fe into Lower HL Decrease in nutrient, humic-type FDOM and D-Fe with depth in Lower HL

 $[NH_{4}]=0~3 \mu M$ [Gueguen et al., 2007; Wang et al., 2006]

Large negative N* value in Upper HL:

Denitrification, consuming nitrate instead of oxygen for bacterial respiration in low-oxygen pore waters in sediments, and supply of nutrient, humic-type FDOM and D-Fe from shelf sediments to the overlying water in the shallower continental shelves

NO₃ versus PO₄ in the Chukchi Sea and Canada Basin in this study (2008)

Upper HL: Pacific water via Bering Strait Lower HL: mixture between Pacific and Atlantic waters due to the inflow of highsalinity Atlantic water into Lower HL

(Jones et al., 1998; Yamamoto-Kawai et al., 2008)

Vertical distributions of PO₄, NO₃ and humic-type F-intensity in the water column of the slope and basin regions

Upper HL: Subsurface maxima of nutrient (NO₃=15 μM, PO₄=1.8 μM, SiO₂=30 μM) Subsurface maxima of Humic-type F-intensity (4~5 QSU): higher than those (2–2.5 QSU) in the North Pacific Ocean Deep water (Atlantic layer + CBDW): NO₃=12–15 μM, PO₄=0.8–1.1 μM, SiO₂=5–15 μM Humic-type F-intensity=2 QSU

Fig. 5

Vertical distributions of D-Fe and T-Fe concentrations in the water column of the slope and basin regions

***** Upper HL: Subsurface maxima of D-Fe (D-Fe=1.2–2.5 nM)

Supply of D-Fe from shelf sediments to the overlying water in the shallower shelves and lateral Fe transport from the shelves to the basin

Organic Fe complexation with dissolved humic substances, probably controlling

D-Fe concentrations in seawater and laterally transporting Fe to the Arctic Ocean interior

* Lower HL: Subsurface maxima of T-Fe (T-Fe=10-50 nM)

Sediment resuspension on the shelves by the inflow of the Atlantic water into Lower HL