Climate Effects and Oregon Coast Coho Salmon: A multi-ecosystem approach

Thomas C. Wainwright Laurie A. Weitkamp

NOAA Northwest Fisheries Science Center Newport, Oregon

Outline

Background Salmon Life Cycle & Habitats Oregon Coast Coho Salmon Climate Links to Salmon Primary Links Pathways Predicting Effects Approach Results Physical/Chemical Pathways Effects on Salmon Conclusions

Salmon Life Cycle

modified from Capital Region District, BC (www.crd.bc.ca)

Multiple Habitats

CC Levi Crouch (commons.wikimedia.org) Coastal Ocean

CC 'Finetooth' (commons.wikimedia.ogr)

Climate Change Effects on Fish and Fisheries, Sendai, April 2010

CC 'Cacophony' (commons.wikimedia.org) Freshwater Streams & Lakes

Oregon Coast Coho (OCC)

Climate Links to Salmon

Complexities

- Salmon integrate conditions across systems
- Terrestrial, Freshwater, Estuarine, Marine
 Multiple pathways connect physical cli
 - mate to salmon population dynamics
- Connections vary in importance depending on system state
- Typical of complex adaptive systems
 It is perhaps impossible to get quanitative predictions of climate effects on salmon
 - But, we should be able to characterize the risks and uncertainties

Approach

Qualitative approach No reliable means of quantifying effects 'Outlook', not a 'forecast' Strictly from published literature Summaries & interpretations of regional downscaling analyses & salmon ecology Three-step procedure Summarize predicted physical changes Identify processes affecting salmon by habitat

- Terrestrial, Freshwater, Estuarine, Marine
- Provide qualitative score on likely effect
 - 5-point scale: strong positive (++) to strong negative (--)
 - Also rate degree of certainty

Physical/Chemical Results

Terrestrial & Freshwater

- Air temperature
 - Average up 0.8C this century, additional 1.7 to 5.6C by 2100

Precipitation

• Likely Increase in winter, decrease in summer

Snowpack

 Snowpack down > 50% since 1950, likely 40%-70% more loss by 2050.

Streamflow

- Reduced summer flows, esp. for snowfed streams (Umpqua)
- Increased flood risk
- Stream temperature
 - Expect summer increases due to air temperature and flow

Physical/Chemical Results

Estuarine & Marine

Sea level

- Projected increase for Washington coast range 15 cm to 1.25 m by 2100, Oregon probably similar
- Confounded by local tectonics
- Sea temperature
 - Global average is warming
 - California Current projections mixed
 - Surface and deep water trends may be opposite
- Upwelling
 - Much disagreement on future,
 - Recent trend toward later onset, shorter season
- Ocean acidification

Summary - Physics

Pattern	Certainty	Sources					
Terrestrial & Freshwater							
Increased air temperature	High	Mote et al., 2003; Mote, 2003; Leung et al., 2004; Mote et al., 2008b; Karl et al., 2009					
Increased winter precipitation	Low	Mote et al., 2003; Mote, 2003; Leung et al., 2004; Mote et al., 2008b; Karl et al., 2009					
Decreased summer precipitation	Low	Mote et al., 2003; Leung et al., 2004; Mote et al., 2008b; Karl et al., 2009					
Reduced winter/spring snowpack	High	Barnett et al., 2004; Barnett et al., 2008; Stewart et al., 2004; Stewart al., 2005; Mote et al., 2005; Mote, 2006; Hamlet et al., 2005; Karl et al 2009					
Reduced summer stream flow	High	Mote et al., 2003; Karl et al., 2009					
Earlier spring peak flow	High	Mote et al., 2003; Leung et al., 2004; Karl et al., 2009					
Increased flood frequency & intensity	Moderate	Mote et al., 2003; Leung et al., 2004; Hamlet & Lettenmaier, 2007					
Higher summer stream temperature	Moderate	Morrison et al., 2002; Ferrari et al., 2007; Lettenmaier et al., 2008					
Estuarine & Marine							
Higher sea level	High	Bindoff et al., 2007; Mote et al., 2008a; Karl et al., 2009					
Higher ocean temperature	High	Auad et al., 2006; Bindoff et al., 2007; Mote et al., 2008b					
Intensified upwelling	Moderate	Bakun, 1990; Mote & Mantua, 2002; Snyder et al., 2003; Diffenbaugh, 2005; Bograd et al., 2009					
Delayed spring transition	Moderate	Snyder et al., 2003; Bograd et al., 2009					
Increased ocean acidity	High	Bindoff et al., 2007; Feely et al., 2004; Fabry et al., 2008; Feely et al., 2008					

Effects on Coho Salmon

Effects on OC Coho Habitats & Biology

- Terrestrial Habitats
- Freshwater Habitats
- Estuarine Habitats
- Ocean Habitats

Terrestrial & Freshwater

	Physical Change	Processes	Effect	Certainty	Main Sources
strial	Warmer, drier summers	Increased fires, increased tree stress & disease affect LWD, sediment supplies, ri- parian zone structure	to 0	Low	Cederholm & Reid, 1987; Mote et al., 2003; ISAB, 2007; Peterson et al., 2008
Terre	Reduced snowpack, warmer winters	Increased growth of higher elevation forests affect LWD, sediment, riparian zone struc- ture	0 to +	Low	Cederholm & Reid, 1987; Mote et al., 2003; ISAB, 2007; Peterson et al., 2008
	Reduced summer flow	Less accessible summer rear- ing habitat	-5-	Moderate	Crozier & Zabel, 2006; Crozier et al., 2008; ISAB, 2007; Mantua et al., 2009
Freshwater	Earlier peak flow	Potential migration timing mismatch	- to 0 (to 0 in Umpqua)	Moderate	Crozier et al., 2008
	Increased floods	Redd disruption, juvenile dis- placement, upstream migra- tion	- to 0 (to - in Umpqua)	Moderate	ISAB, 2007; Mantua et al., 2009
	Higher stream tempera- ture	Thermal stress, restricted habitat availability, increased susceptibility to disease and parasites	to -	Moderate	Marine & Cech, 2004; ISAB, 2007; Crozier et al., 2008; Farrell et al., 2008; Marcogliese, 2008; Mantua et al., 2009;

Estuarine & Marine

	Physical Change	Processes	Effect	Certainty	Main Sources
Estuarine	Higher Sea Level	Reduced availability of wet- land habitats	to -	High	Kennedy, 1990; Scavia et al., 2002; Roessig et al., 2004; Mote et al., 2008a
	Higher water tempera- ture	Thermal stress, increased susceptibility to disease and parasites	to -	Moderate	Marine & Cech, 2004; Marcogliese, 2008
	Combined effects	Changing estuarine ecosys- tem composition and struc- ture	to +	Low	Kennedy, 1990; Scavia et al., 2002; Roessig et al., 2004
	Higher ocean tempera- ture	Thermal stress, shifts in mi- gration, susceptibility to dis- ease & parasites	to -	Moderate	Welch et al., 1995; Cole, 2000; Marine & Cech, 2004; Marcogliese, 2008
Marine	Intensified upwelling	Increased nutrients (food supply), coastal cooling, ecosystem shifts; increased offshore transport	0 to ++	Moderate	Nickelson, 1986; Fisher & Pearcy, 1988
	Delayed spring transi- tion	Food timing mismatch with outmigrants, ecosystem shifts	- to 0	Moderate	Schwing et al., 2006; Brodeur et al., 2005; Emmett et al., 2006
	Increased acidity	Disruption of food supply, ecosystem shifts	to -	Moderate	Fabry et al., 2008
	Combined effects	Changing composition and structure of ecosystem; changing food supply and predation	to +	Low	Fabry et al., 2008; Peterson & Schwing, 2003; Brodeur et al., 2005; Emmett et al., 2006; Bograd et al., 2009

Terrestrial Habitats

- Effects on stream habitats
 - Changed dynamics of large wood

water.washington.edu

Interactions with beaver dynamics

nwfsc.noaa.gov

Freshwater Habitats

Reduced summer flows
 Earlier peak flows (Umpqua)
 Increased flood frequency & intensity
 Higher stream temperatures

Crozier & Zabel 2006

Estuarine Habitats

Higher sea level Loss of tidal wetlands

maps.risingsea.net

Ocean Habitats

Increased acidity Physiological stress

Reduced abundance of some prey

Figure 8. Oxygen consumption rates under elevated CO₂ for marine animals as a percentage of control rates (air saturation). Decreases in routine metabolism, an adaptive strategy to short-term hypercapnia, of the squid *Dosidicus gigas* ~1000 ppmv (0.1% at 20°C), the pteropod mollusc *Limacina helicina antarctica* under 789 ppmv (-1.86° C), the worm *Sipunculus nudus* and an amphipod *Phronima sedentaris* under 10 000 ppm (1.0%), and the bivalve *Mytilus edulis* under ~5000 ppmv (0.5%, pH 7.3, 18°C) carbon dioxide. (R. Rosa, and B. Seibel, unpublished data; Pörtner and Reipschläger (1996); Michaelidis *et al.* (2005)).

Fabry et al., 2008

Conclusions

Individual life stage effects Predominantly negative, a few positive Many weak or uncertain Cumulative effects Across life cycle and across generations Life stage effects are multiplicative, amplifying individual effects Uncertainties also accumulate across life stages Likely strong negative effect of climate change on Oregon Coast coho salmon However, there remain great uncertainties in the biological response

Desires

What we would like

- Quantitative estimates of climate change impacts on salmon
 - Is this a pipe dream for such a complex system?
 - Can we at least quantify uncertainty?

Improved climate models

- Better local resolution
 - Coast Range orographic effects
 - Coastal ocean dynamics (over shelf)
- Seasonality/phenology
- Unbiased long-term temperature forecasts (freshwater & marine)

Acknowledgements

- We are indebted to
 - The global climate modeling community;
 - The IPCC; and
 - In particular, to the Pacific Northwest regional climate downscalers.