Future recruitment of Bering Sea walleye pollock: (1) retrospective patterns \& uncertainty

Franz J. Mueter ${ }^{1}$, Nickolas Bond², Jim

 Ianelli ${ }^{3}$, Anne Hollowed ${ }^{3}$${ }^{1}$ Juneau Center, School of Fisheries \& Ocean Sciences, University of Alaska Fairbanks, Juneau, AK, USA
${ }^{2}$ Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, WA, USA
${ }^{3}$ Alaska Fisheries Science Center, NMFS, NOAA, Seattle, WA, USA

Goals

- Quantify impacts of climate variability on the recruitment of walleye pollock in the eastern Bering Sea
- Project future recruitment and population trends under possible warming scenarios

General approach
(Hollowed et al 2009, Hare et al 2010)

1. Identify likely mechanisms driving recruitment
2. Develop robust empirical relationships

- $\quad \mathrm{R}$ as function of relevant indictors variable(s)

3. Generate future scenarios for indicators based on IPCC model projections (downscaling) \rightarrow Nick Bond (next talk)
4. Simulate possible population trajectories of pollock under various warming scenarios and different harvest control rules

Simple alternative to full end-to-end model for predicting responses of individual species

Walleye pollock recruitment

NOAA extended reconstructed SST, July - September average

Principle Components Analysis

Variables:

- Timing of ice retreat
- Spring transition
- Late summer SST
- Summer wind mixing
- Water column stability
- Predation pressure
\Longrightarrow Four significant modes
\Rightarrow Recruitment significantly related to PC 1 and PC 3

Eigenvalues

PC 1: warm vs. cold
PC 2: windy vs. calm (stratified)
PC 3: low vs. high predation
PC 4: late spring / warm summer

Modeled log-recruitment (1977-2007)

$\mathrm{R}^{2}=0.54$
$P<0.0001$

Simplifying model for projections

Two main gradients:

- PC 1: Warm vs. cold (spring \& summer)
- Importance of spring vs. summer conditions?
- Comparison of models \& correlations suggest that late summer SSTs are more important (SST effects only significant for July - Sept.)
\rightarrow Use late summer SST for projections!
- PC 3: Predation
- Use index of predation instead of PC3!

Estimated effects of SST and predation on recruitment

$$
\begin{gathered}
R^{2}=0.44 \\
P=0.001
\end{gathered}
$$

Problem: projected SSTs extend beyond range of historical data

Projections

- Project population forward through 2050 starting with numbers-at-age and parameters from 2009 assessment (fixed parameters)
- Scenario 1: Current harvest control rule
- Catch capped at 1.5 million tons
- No fishing if B < 20\% of unfished biomass
- Scenario 2: No fishing
- Recruitment scenarios:

1. random R from historical estimates (1977-2008)
2. predicted R from SST-recruitment relationship using summer SSTs estimated from IPCC scenarios

Scenario 1 (current control rule): With and without SST effect

90\% simulation envelopes

SST effect on future biomass:

 Scenario 1 (fishing with current harvest control rule)vs. Scenario 2 (no fishing)

Spawning Stock Biomass

No fishing
With fishing

Conclusions

- Simple empirical relationship, combined with SST projections estimated from IPCC model output, allow more realistic projections of future pollock dynamics for management strategy evaluations
- Large uncertainties in future trajectories arise from uncertainty in SST
- Given current understanding of pollock dynamics, pollock abundance is likely to decline in the future under any fishing scenario and catches will be highly variable under current harvest control rule

Acknowledgements

Funding provided by the North Pacific Research Board

Thank you for data and ideas:

- Robert Lauth
- Troy Buckley
- George Hunt
- Ken Coyle

