14th PICES

The vertical and horizontal distribution of bigeye tuna (*Thunnus obesus*) and yellowfin tuna (*Thunnus albacares*) related to ocean structure

Eun Jung Kim^{-1,2}, Suam Kim¹, Dae-Yeon Moon² and Jeong-Rack Koh² ¹Pukyong National University ²National Fisheries Research & Development Institute

Introduction

The tuna fishing area in the Tropical Pacific

Schematic vertical distribution of tuna species in Pacific 0 13. Sep. 1992 Lat. 2° 16S, Long. 179° 19E

Skipjack tuna & environmental factors

To find the response of spatial & vertical distribution of bigeye & yellowfin tuna related to the oceanographic condition

Horizontal distribution of bigeye and yellowfin tuna

Materials & Methods

□ Fishing data

- About 200 Korean longline vessels
- Jan. 1999 Dec. 2000
- Catch numbers of bigeye and yellowfin tuna georeferenced in 5° grids of latitude and longitude.
- Fishing gravity centre of CPUE(G) in month j

 $G_{j} = \sum_{i} L_{i} (C_{ij}/E_{ij}) / \sum_{i} (C_{ij}/E_{ij})$

Seasonal change (3 months) of fishing centroids

Monthly change of centroids

Longitudinal centroids

Latitudinal centroids

What causes this change?

Longitudinal centroids & SST of NINO3.4

Seasonal change (3 months) of fishing centroid

Anomaly of SOI (Southern Oscillation Index) with longitudinal centroids

Vertical distribution of bigeye and yellowfin tuna

Materials & Methods

Schematic view of a "basket" of tuna longline gear

Materials & Methods

Fishing data

- One fishing vessel, Sinyoung 53
- August 1999 October 2000
- Catch per hook of 211 sets of longline setting

FISHING AREA

to calculate the depth of each hook...

Yoshihara formula (1951, 1954) $D_{j} = h_{a} + h_{b} + L\{(1 + \cot^{2}\varphi^{\circ})^{1/2} - [(1 - 2j/n)^{2} + \cot^{2}\varphi^{\circ}]^{1/2}\}$

No.	1	2	3	4	5	6	7	8	
Of book	(17)	(16)	(15)	(14)	(13)	(12)	(11)	(10)	9
	120- ⁻	190m	191-2	260m	261-3	3.30m	- 33	1-400	m
Dept	120			-00111					
h	131	164	207	247	286	322	351	372	379
(m)									

Environmental data (TAO buoy data) (http://www.pmel.noaa.gov/tao/index.html) Subsurface temperature (0-500m)

□ yellowfin □ bigeye

Summary

Spatial distribution with season was not clear, but catch locations of both species look coherent longitudinally.

- Bigeye tuna seem to distribute further east than yellowfin tuna.
- El Niño might affect on the longitudinal fishing grounds of both species. However, yellowfin tuna response more sensitively to the environmental change than bigeye tuna.

Bigeye tuna located in deeper depth than yellowfin tuna.

When the SOI was negative (i.e., thermocline was shallow in the western area), the tuna distributions seemed to be located more in the western area, and vice versa.

The vertical movement was not clear from our study.

- Use of more vertical data over longer
 period
- Investigation on distribution of several tuna species under dynamical ocean structure

Bait selectivity

Materials & Methods Bait were used...

Mackerel

Horse mackerel

Squid

Sardine

Herring

Results & Discussion

□ Bait selectivity of bigeye tuna

□ Bait selectivity of yellowfin tuna

Sardine and horse mackerel are the efficient bait for bigeye and yellowfin tuna.

The order of bait efficiency is not change even the depth difference in both species.