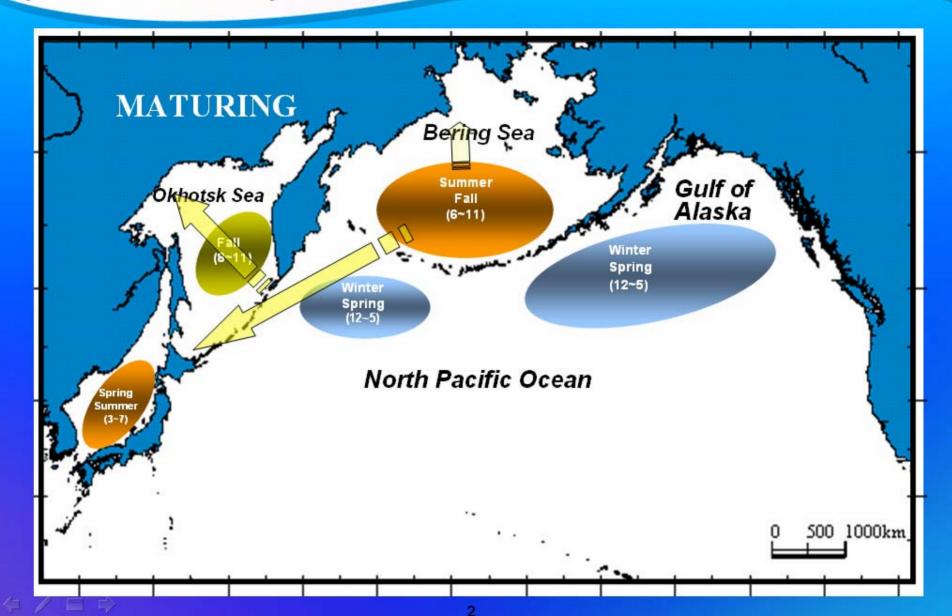
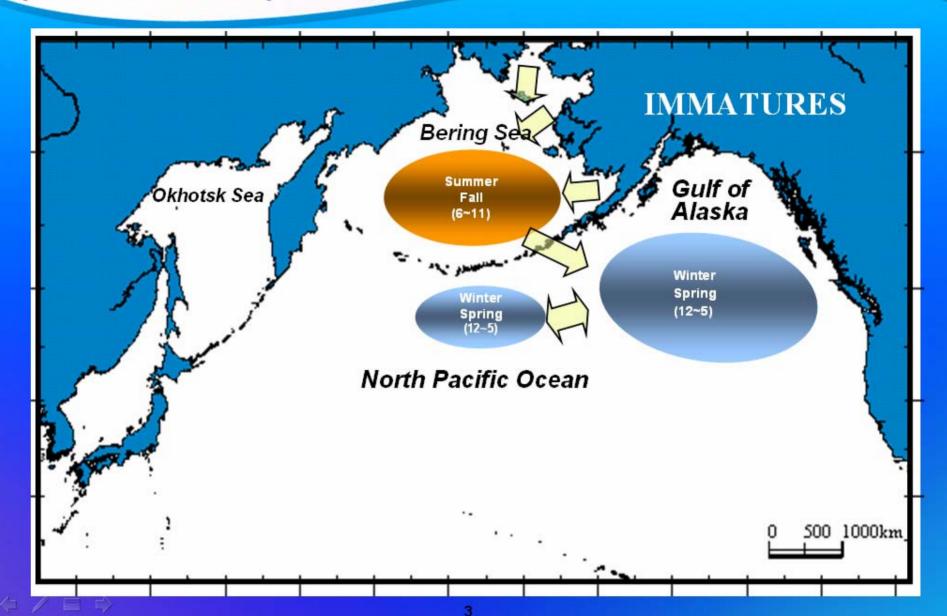
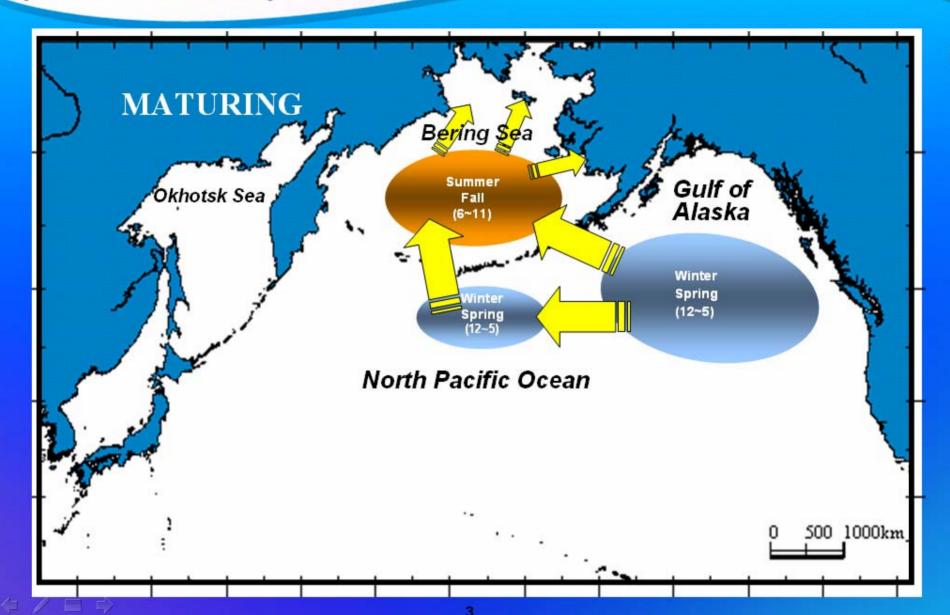
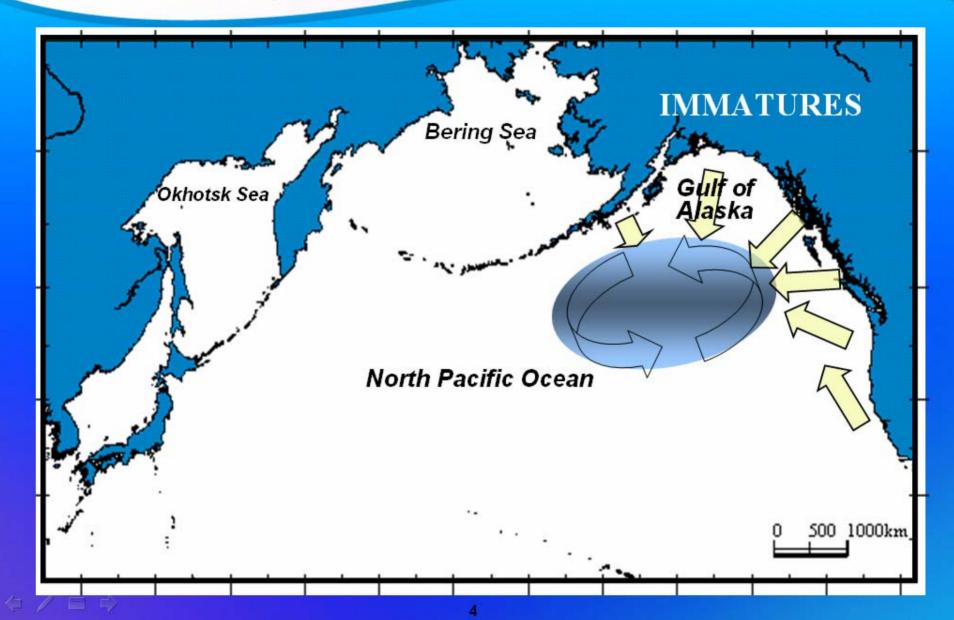

Genetic separation of chum salmon (Oncorhynchus keta) collected from the western Bering Sea during summer-autumn 2004

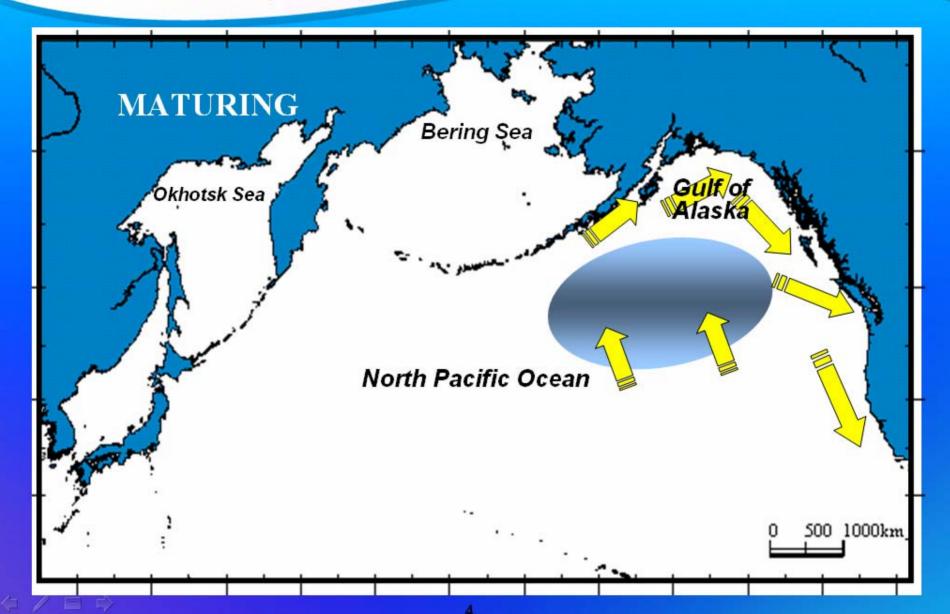

¹Min Ho Kang, ¹Suam Kim, and ²Loh-lee Low

¹Pukyong National University ²Alaska Fisheries Science Center, NOAA, USA


Migration model of Asian chum salmon (Seeb et al. 2004)


Migration model of Asian chum salmon (Seeb et al. 2004)


Migration model of western Alaskan chum salmon (Seeb et al. 2004)


Migration model of western Alaskan chum salmon (Seeb et al. 2004)

Migration model of other North American chum salmon (Seeb et al. 2004)

Migration model of other North American chum salmon (Seeb et al. 2004)

Objectives

The aims of this presentation are to

provide the basic information on baseline data
 of chum salmon along the North Pacific coast

clarify their genetic relationships and phylogeny

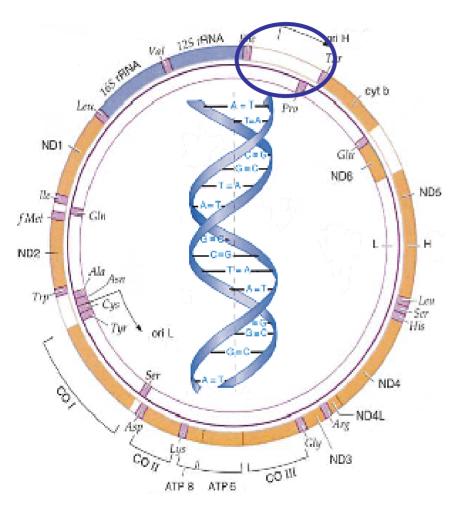
calculate the Genetic Stock Identification (GSI)
 of mixing stocks in the western Bering Sea

Contents

PART 1. Genetic population structure of chum salmon in the Pacific-rim

- 1-1 Materials and methods for baseline data
- 1-2 Results
 - 1-2-1 Haplotype composition in the baseline data
 - 1-2-2 Haplotype distribution in the baseline data
 - 1-2-3 Geographic differentiation in the Pacific-rim populations

Re-analysis mtDNA baseline data collected from hatcheries along the Pacific-rim.


Contents

Mixing status of ocean catch was investigated with BASIS samples collected from the western Bering Sea (2004).

PART 2. Genetic stock identification of chum salmon in the western Bering Sea during fall 2004

- 2-1 Materials and methods for mixing stock
- 2-2 Results
 - 2-2-1 Haplotype compositions and distribution of mixtures in the western Bering Sea
 - 2-2-2 Genetic stock identification (GSI)

Methods

- Control region
- PCR Purification
- Direct sequencing
 PCR method
- Sequencing analysis

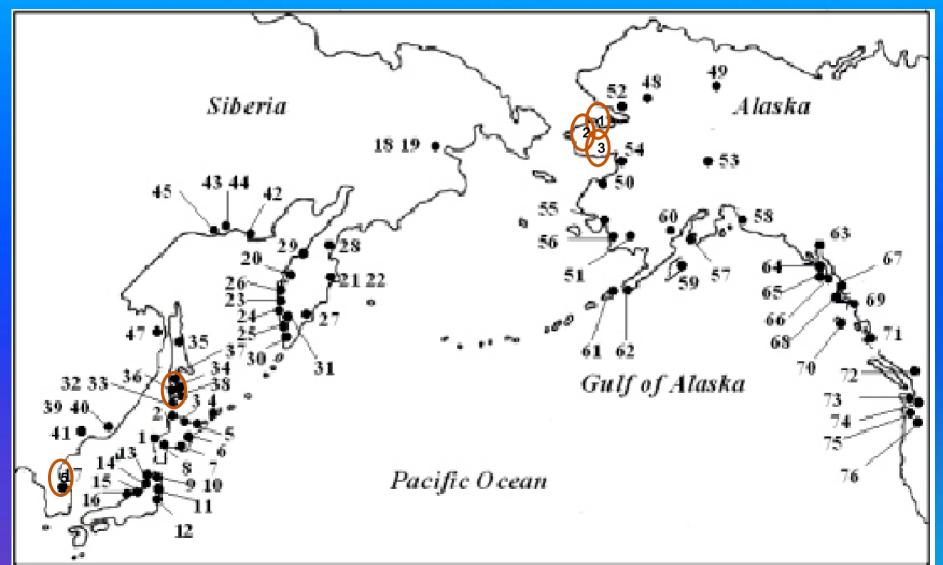
Methods

- The haplotype (H) and nucleotide diversity (π) in the mtDNA control regions
- Phylogenetic tree: Phylip software
- Geographic structuring: AMOVA test (Arlequin software)

Materials for Baseline data

Previously analyzed

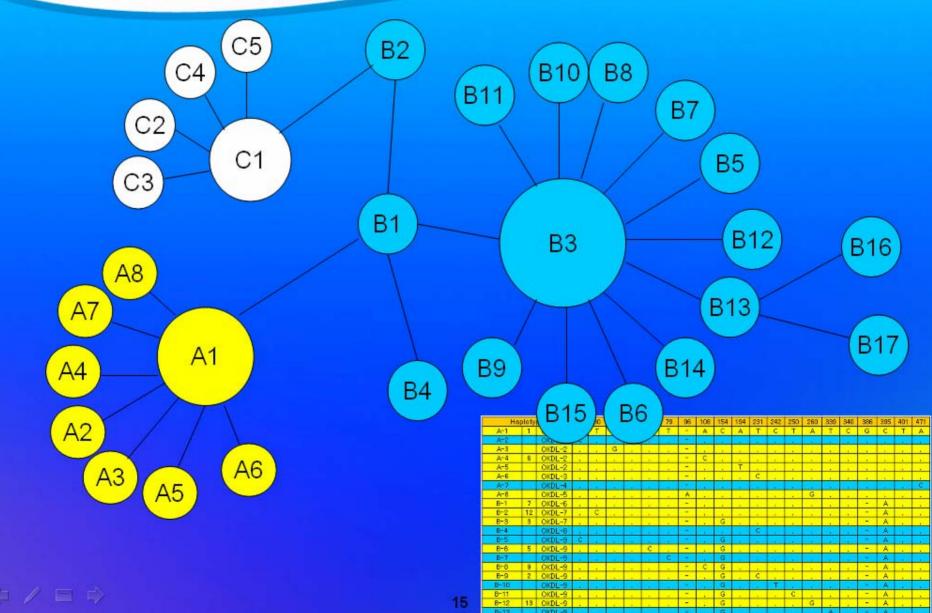
- 48 populations (Sato et al., 2004)
- 48 + 28 populations (Yoon et al., 2004)

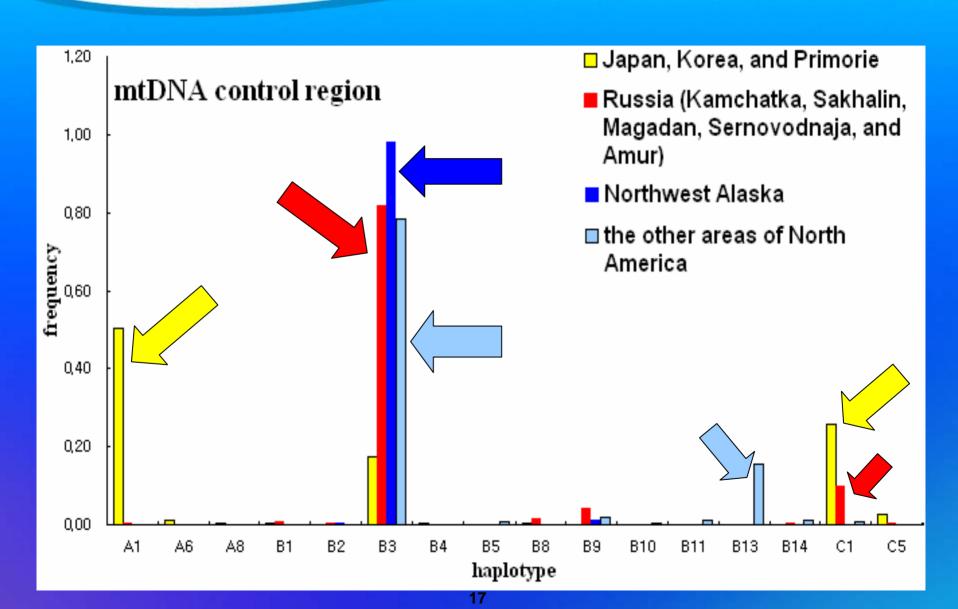

We added five more populations

- Namdae river (Korea, 2004)
- Taranai river (Russia, 2004)
- Niukluk, Kwiniuk, Fish river (Alaska, 2004)

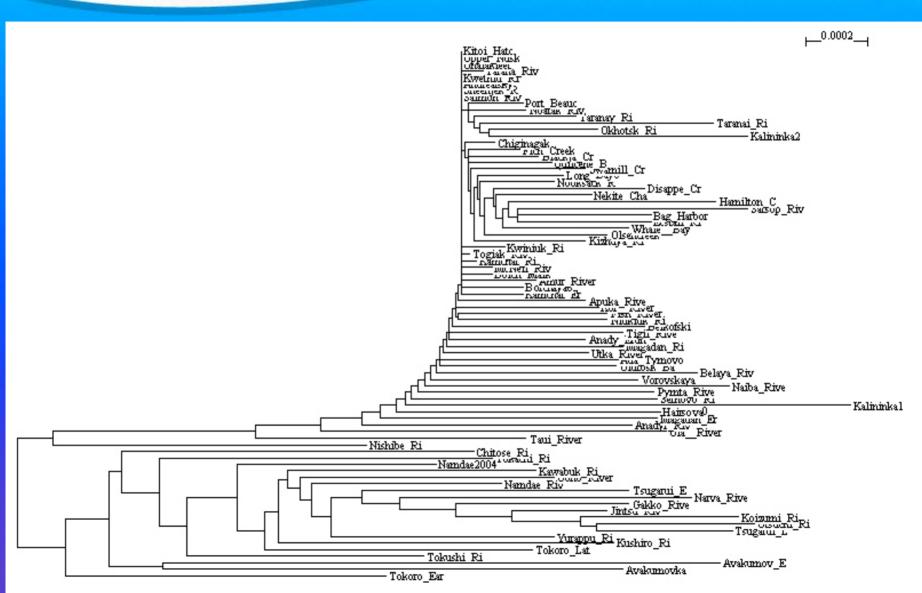
So, totals of 81 populations were analysed in this study.

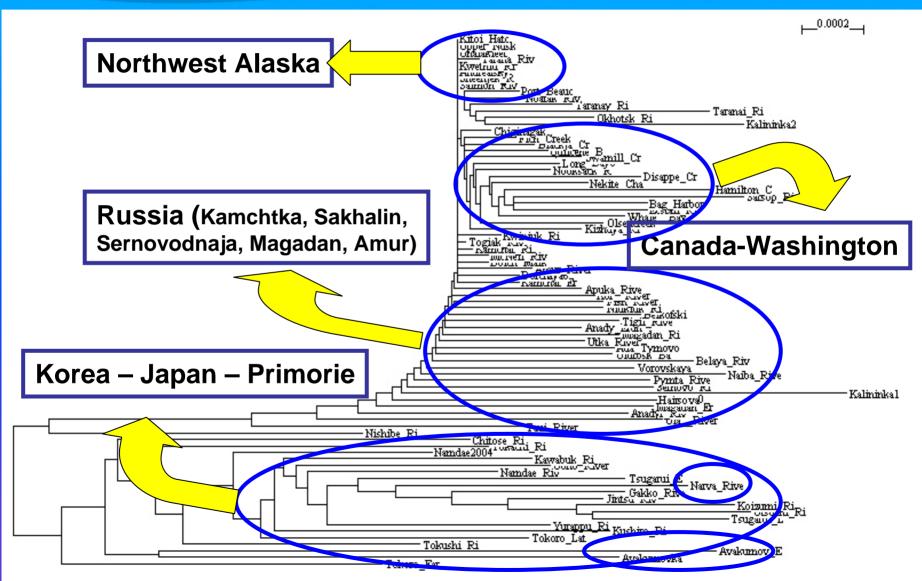
Materials


Geographical locations of Baseline data (Yoon et al., 2004)


Haplotype composition in the Baseline data (Sato et al., 2004)

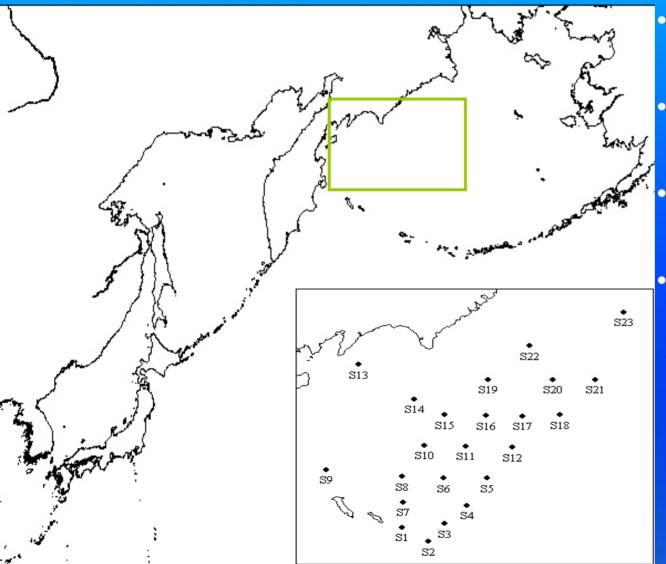
па	pioty	ре	10	30	42	57	70	79	96	108	154	194	231	242	250	260	339	340	386	395	401	471
A-1	1	OKDL-1	Т	Т	Α	Α	Т	Т	-	Α	С	Α	Т	С	Т	Α	Т	С	G	С	Т	Α
A-2		OKDL-2	С	2		4			-			1						1				
A-3		OKDL-2			G				-											(L.,)		
A-4	6	OKDL-2							1	С	- 4		- 20	- 4		- 1			· v		- 1	
A-5		OKDL-2	<u> </u>						-			Т							- (-,	
A-6		OKDL-3							1		4		С	14					γ.		,	4
A-7		OKDL-4			14	1			-	42	1		1	14	4	1			1	100	14	С
4_0		OKDI E							Α							G						
B-1	7	OKDL-6	/s			-	7		-		- 1	· v	0	- 1	- 1		4		-	Α	- 1	- 4
B-2	12	OKDL-7		С					-						,				-	Α	,	
B-3	3	OKDL-7							-		G		- 10						-	Α		
B-4		OKDL-8		1					-				С						-	Α		
B-5		OKDL-9	С						-		G								-	Α		
B-6	5	OKDL-9				- 4	С		-		G								-	Α		
B-7		OKDL-9			10.0			С	-		G								-	Α		
B-8	9	OKDL-9							-	С	G							- 1	-	Α		
B-9	2	OKDL-9							-		G		С	-					-	Α	•	
B-10		OKDL-9							-	(8)	G			Т					-	A		
B-11 B-12	13	OKDL-9								-	G				С	G				A		
B-12	13	OKDL-9 OKDL-9							_		G					G			_	A		
B-13		OKDL-9							-		G						Α	-	-	A	ċ	-
B-15	10	OKDL-9	-			-			_		G	-		- 1	-		-		_	A	-	Ċ
B-16	10	OKDL-9		-		•	•	•	_		G	-		-	-		A	-	-	A	•	-
B-17		OKDL-9		-		-	-	-	-		G	-		-	-	-	A	-	-	A	Ċ	
C-1	4	OKDL-9		Ċ	270		-	-	-	1/20									91			
C-2		OKDL-10		C		Ť			-													
C-3		OKDL-11		С			Ċ		-			-				<u>.</u>				<u> </u>		i.
C-4		OKDL-11		С				7	-	T							70		- 2			1
/ C=5	11	OKDL-12		С					-				Ċ									
100	16	J	-		_	_				10	_			_	_			_	_	_		


Haplotype composition in the Baseline data (Sato et al., 2004)


Haplotype distribution in the Baseline data

Phylogenetic Tree; Neighbor-joining method

Phylogenetic Tree; Neighbor-joining method



Analysis of molecular variance (AMOVA) Test in the Baseline data

Variance component	Percentage of variation (%)	Probability (P)	F-statistics (Φ)
Analysis I			
Among four major groups (Korea-Japan-Primorie / Russia / Northwest Alaska / the other areas of North America)	35.95	(0,001	0.410
Among populations within groups	5,04	(0.001	0.079
Within populations	59,01	(0.001	0,360

Materials for mixing stock

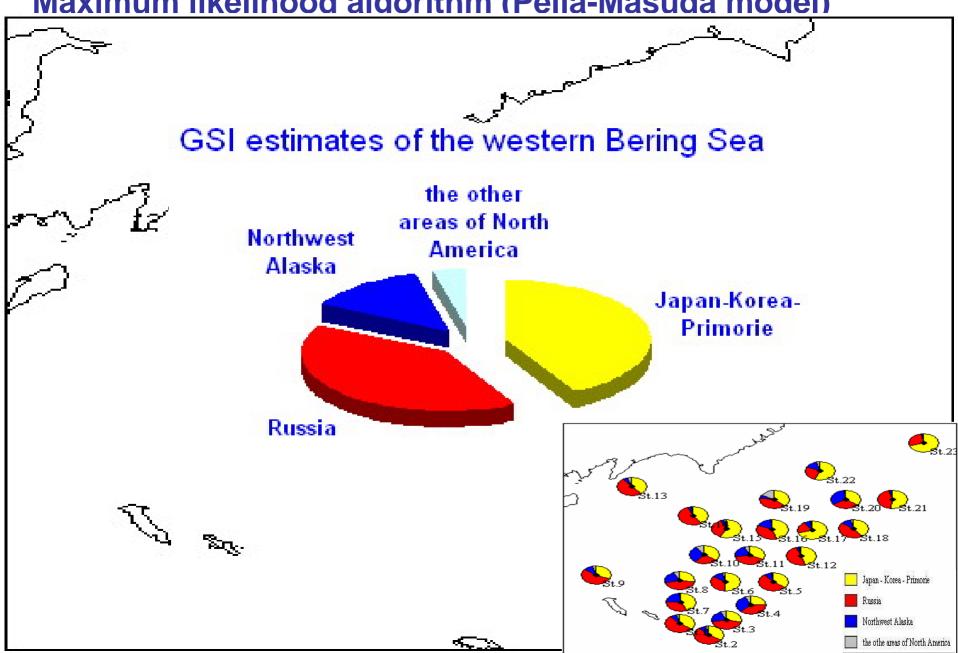
Geographical locations of Mixing stocks

- Sampling date:Sept. 26 ~ Oct. 23, 2004
- Sampling gear:
 - **TINRO** research cruise
- Speed of trawl:
 - ~ 4.4 knots
- •A total of 826 specimens from 48 stations

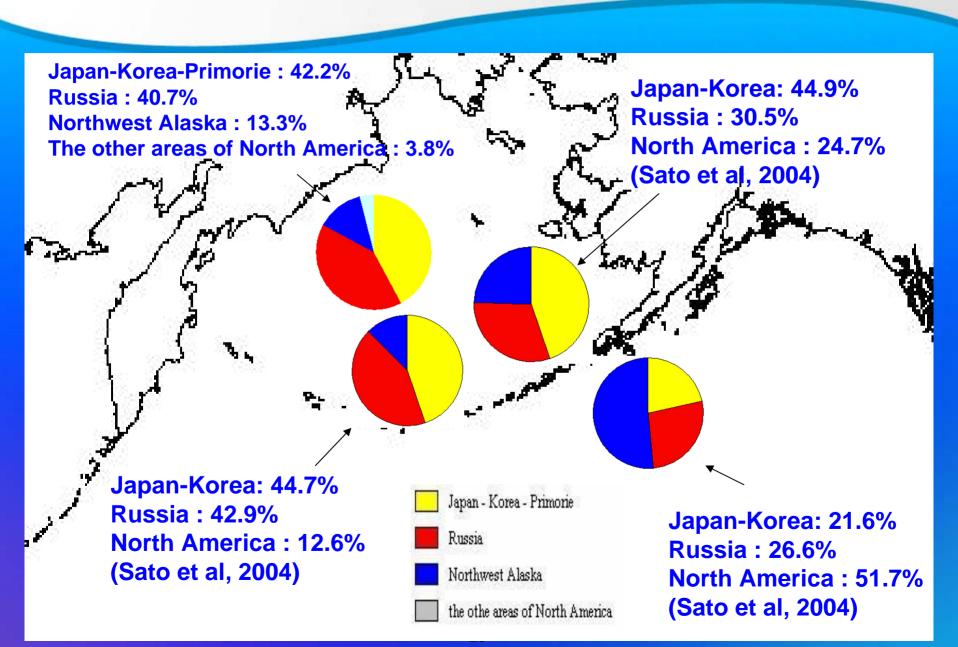
Methods

- The haplotype (H) analysis for stock composition
- Estimation of regional proportion:

Statistic Programs for Analyzing Mixtures (SPAM version 3.7, ADGF 2003)


Results

< Haplotype composition and distribution of mixtures in the western Bering Sea >


Station Area	1	A1	43	Α4	A5	A6	A8	В1	В2	вз	В6	В7	В8	вэ	B11	B12	B15	C1	cз	C5
S1	₽	3								14								4		
S2	┸	6					b 5	2		17	_			1				2		1
S3	┸	5						1		21								3		
S4	┸	3								11	1							1		
S5_	┸	2		1				1		10								4		
S6	┸	11					n 1	1		15			1					2		
S7	┸	7						1		21				2				9		1
S8	┸	5						1		21								3		
S9	┸	4						1		14			1					3		
S10	┸	6								19								3		
S11	┸	3			1					17								4		
S12	┸	9						3		13			1					2		
S13	┸	8						1		17				2				4		
S14		6				1	1	4		18								4		
S15	┸	13								18			1	2				12		
S16		13						2		25			2			1		5		1
S17	┸	9								12								12	1	
S18		9				1	5 6	1		27								10		
S19		6						2		19					1			5		
S20		11						1	1	28						1		3		
S21		11	2					1	3	22				1				12		
S22		5								10								5		
S23		4				2			2	6								9		

GSI (Genetic Stock Identification):

Maximum likelihood algorithm (Pella-Masuda model)

Results

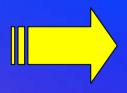
Conclusion

1. In the phylogenetic relationship,
Primorie population was closer to Japan/Korea group

2. The population structure indicates four groups of chum salmon populations in the North Pacific

Japan-Korea-Primorie group
Russian group (around the Okhotsk Sea)
Northwest Alaskan group (Bering Sea)
The other areas of North American group
(Gulf of Alaska, Canada, Washington, etc.)

Conclusion


3. Genetic stock identification in the western Bering Sea;

Japan-Korea-Primorie: 42.2%

Russia: 40.7%

Northwest Alaska: 13.3%

The other areas of North America: 3.8%

Some portions of Chum salmon released from the mainland North America migrate to the Bering Sea during marine life!!!

Future works

Approach for determining the distribution of chum salmon at sea by using

- patterns of variation in polymorphic DNA marker
- relative abundance of immature and maturing salmon in time and space

Thank you