

OSA as an unknown route of exposure to filter feeding bivalve in the turbid environment

Andrew Loh^{1,2}, Un Hyuk Yim^{1,2}, Sung Yong Ha¹, Joon Geon An¹ and Won Joon Shim^{1,2}

¹Korea Institute of Ocean Science and Technology (KIOST) ²University of Science and Technology, Korea (UST)

Introduction

- Materials and method
- Results and Discussion
- Conclusion

Introduction

• The Hebei Spirit Oil Spill: The Largest Oil Spill in Korea

- Collision of MV Hebei Spirit with a barge on 7th December 2007 released approximately 12,547 kL (10,900 M/T) of crude oil.
- The MV Hebei Spirit was carrying three kinds of crude oil, namely UAE Upper Zakum (UZC), Kuwait export crude (KEC) and Iranian heavy crude (IHC).
- Due to the strong westerly wind, spilled oil polluted most of west coast of Korea, 375 km coastlines.
- More than one million of volunteers joined for initial oil cleanup.
- Oil spill compensation process is still under way.

Multi-media monitoring for oil contamination

ම ^{한국해양연구원} 유류·유해물질연구단

Route of exposure using exposure media

- Traditional route of exposures; Water Accommodated Fractions (WAF) and Mechanically Dissolved Oil (MDO).
- Traditional methods could not match the Petroleum Derived Hydrocarbon distributions in oysters from spill site.
- Tests of unknown mode of exposure; Oil SPM Aggregates (OSA)

• OSA formation as the output of oil and particle interactions

- > When oil and suspended particles interact, OSA is formed.
- OSA formation has been observed in several large spills; Exxon Valdez (1989), Sea Empress (1996) and Deep Water Horizon (2010).
- OSA is formed in 2 main steps;
 - (1) Breaking of surface oil by wave actions
 - (2) Interaction of oil and particles

• Research objectives

- To <u>compare</u> the fate of oil in the traditionally used <u>exposure</u> <u>methods</u>.
- To identify the <u>continuous source</u> of oil contamination to bivalves in the HSOS.
- To identify the fate of spilled oil in <u>high turbidity environments</u> such as intertidal areas.

Materials and Method

• Formation of **WAF**

- Method following CROSERF with slight modification
- (1) 1 L filtered seawater + magnetic stirrer
- (2) Addition of **25 g** of Iranian Heavy Crude Oil
- (3) Magnetic stirred at 120 rpm for 24 hours
- (4) 900 ml of solution excluding surface oil was collected

• Formation of **MDO**

- (1) 1 L filtered seawater placed in separatory funnel
- (2) Addition of **25 g** of Iranian Heavy Crude Oil
- (3) Vertical shaking at 50 rpm for 15 minutes
- (4) Settled for 1 hour
- (5) 900 ml of solution excluding surface oil was collected

• Formation of **OSA**

- > Method following Khelifa et a., 2002 with slight modification.
- (1) 1 L filtered seawater + 200 mg of particle
- (2) Solution + 600 mg of Iranian Heavy Crude oil (Approxi. 1/40 of MDO and WAF)
- (3) Reciprocal shaking for 24 hours
- (4) Solution settled for 24 hours
- (5) 900 ml of solution excluding surface oil was collected

• Exposure of media to oysters

- > Prior to exposure, oysters were acclimated in filtered seawater for 3 days.
- Oysters are placed into the beaker filled with 700 ml of exposure media and a small magnetic stirrer.
- 10-AU fluorometer equipped with oil kit was used to quantify total petroleum hydrocarbons before and after exposure.
- After 24 hours of exposure, exposure media was replaced with newly prepared exposure media.
- After 48 hours of exposure, oysters were collected and prepared for chemical analysis using GC/FID and GC/MS.

Results and Discussion

Visual observation of oyster uptake

MDO

OSA

() ^{한국해양연구원} 유류·유해물질연구단

TPH Changes of Exposure Media

Exposure media	Before exposure (ppm)	After 24 hrs exposure (ppm)	Total loss (ppm)
MDO	238.0	109.0	129.0 (highest)
OSA	48.0	44.4	4.4 (middle)
WAF	0.92	0.67	0.25 (lowest)

GC/FID chromatograms of petroleum hydrocarbons in oysters

() ^{한국해양연구원} 유류·유해물질연구단

Accumulation of Petroleum Derived Hydrocarbons in oysters

	Control	MDO (highest)	OSA (middle)	WAF (lowest)
ТРН	18.5	113.0 ± 52.0	$\textbf{66.2} \pm \textbf{15.9}$	$\textbf{35.8} \pm \textbf{6.9}$
UCM	8.7	66.9 ± 39.9	$\textbf{28.1} \pm \textbf{10.6}$	$\textbf{12.7} \pm \textbf{0.6}$
n-Alkane	0.5	7.1 ± 6.3	1.1 ± 0.6	0.3 ± 0.0
16 PAHs	0.1	$\textbf{3.0} \pm \textbf{0.5}$	$\textbf{2.8} \pm \textbf{0.6}$	$\textbf{2.4} \pm \textbf{0.9}$
Alkyl PAHs	0.3	60.2 ± 19.9	35.2 ± 6.1	13.8 ± 1.8

MDO-OSA-WAI.

- But n-alkane for WAF exposed oyster was similar with control oyster.
- 16 PAHs have similar concentrations for all oysters, however, the concentration of Alkylated PAHs was highest from MDO>OSA>WAF.
- > This shows that, monitoring 16 PAHs alone is not suitable.
- Monitoring Alkylated PAHs could provide more accurate evaluation.

Comparison of PAH profiles

PAH double ratio plots

- 16 PAHs concentrations could not distinguish their route of exposure but alkyl PAHs could.
- > Alkyl PAHs could be used in double ratio plots to identify their relativity with source oil.
- Double ratios using alkylated Phenanthrene and alkylated Dibenzothiophene has been widely used for oil fingerprinting.
- Double ratios of MDO and OSA matched more with the source oil but WAF did not match.
- > Double ratio plots are very useful fingerprinting tool.

- ➤ To explain persistency of PAHs in oysters after the Hebei Spirit oil spill, available exposure method including WAF, MDO, and OSA were tested.
- Among three exposure media, OSA showed higher accumulation efficiency than others.
- Alkylated PAHs in oyster well exhibited accumulation of petroleum derived hydrocarbons.
- PAHs double ratio in oyster was proved to be useful for oil fingerprinting.
- SA could be used as a new route of exposure to study the bioaccumulation of oil.

End of Presentation

